21 resultados para microporous aluminophosphate
em Aston University Research Archive
Resumo:
Microporous, poly(ε-caprolactone) (PCL) matrices were loaded with progesterone by precipitation casting using co-solutions of PCL and progesterone in acetone. Progesterone loadings up to 32% w/w were readily achieved by increasing the drug content of the starting PCL solution. The kinetics of steroid release in PBS at 37°C over 10 days could be described effectively by a diffusional release model although the Korsmeyer-Peppas model indicated the involvement of multiple release phenomena. The diffusion rate constant (D) increased from 8 to 24 μg/mg matrix/day0.5 as the drug loading increased from 3.6 to 12.4% w/w. A total cumulative release of 75%-95% indicates the high efficiency of steroid delivery. Increasing the matrix density from 0.22 to 0.39 g/cm3, by increasing the starting PCL solution concentration, was less effective in changing drug release kinetics. Retention of anti-proliferative activity of released steroid was confirmed using cultures of breast cancer epithelial (MCF-7) cells. Progesterone released from PCL matrices into PBS at 37°C over 14 days retarded the growth of MCF-7 cells by a factor of at least 3.5 compared with progesterone-free controls. These findings recommend further investigation of precipitation-cast PCL matrices for delivery of bioactive molecules such as anti-proliferative agents from implanted, inserted or topical devices.
Resumo:
A high-surface-area silicon oximide-based gel [SiOC(H)=NSi]m[Si2N-C(H)=O]n[SiN(H)-C(H)=O]p[SiOC(H)=NH]q[SiNH]r[SiNH2]s[SiNMe2]t was prepared via a formamide-based aminolysis of tris(dimethylamino)silylamine, (Me2N)3SiNH2. The structure of the gel and the mechanism of formation are elucidated. Pyrolysis of the gel at 1000 °C under N2 flow gave an amorphous microporous oxynitride-based glass with a BET surface area of 195 m2 g−1. © The Royal Society of Chemistry 2005.
Resumo:
Microporous polycaprolactone (PCL) matrices loaded with hydrophobic steroidal drugs or a hydrophilic drug - pilocarpine hydrochloride - were produced by precipitation casting using solutions of PCL in acetone. The efficiency of steroid incorporation in the final matrix (progesterone (56 %) testosterone (46 %) dexamethasone (80 %)) depended on the nature of the drug initially co-dissolved in the PCL solution. Approximately 90 % w/w of the initial load of progesterone, 85 % testosterone and 50 % dexamethasone was released from the matrices in PBS at 37°C over 8 days. Pilocarpine hydrochloride (PH)-loaded PCL matrices, prepared by dispersion of powder in PCL solution, released 70-90 % of the PH content over 12 days in PBS. Application of the Higuchi model revealed that the kinetics of steroid and PH release were consistent with a Fickian diffusion mechanism with corresponding diffusion coefficients of 5.8 × 10-9 (progesterone), 3.9 × 10 -9 (testosterone), 7.1 × 10-10 (dexamethasone) and 22 × 10-8 cm2/s (pilocarpine hydrochloride). The formulation techniques described are expected to be useful for production of implantable, insertable and topical devices for sustained delivery of a range of bioactive molecules of interest in drug delivery and tissue engineering.
Resumo:
Hexaphenylbiadamantane-based microporous organic polymers (MOPs) were successfully synthesized by Suzuki coupling under mild conditions. The obtained MOPs show high surface area (891 m2 g−1), ultra-high thermal (less than 40% mass loss at temperatures up to 1000 °C) and chemical (no apparent decomposition in organic solvents for more than 7 days) stability, gas (H2, CO2, CH4) capture capabilities and vapor (benzene, hexane) adsorption. These combined abilities render the synthesized MOPs an attractive candidate as thermo-chemically stable adsorbents for practical use in gas storage and pollutant vapor adsorption.
Resumo:
Microencapsulation processes, based upon the concept of solvent evaporation, have been employed within these studies to prepare microparticles from poly--hydroxybutyrate homopolymers and copolymers thereof with 3-hydroxyvalerate [P(HB-HV) polymers]. Variations in the preparative technique have facilitated the manufacture of two structurally distinct forms of microparticle. Thus, monolithic microspheres and reservoir-type microcapsules have been respectively fabricated by single and double emulsion-solvent evaporation processes. The objective of the studies reported in chapter three is to asses how a range of preparative variables affect the yield, shape and surface morphology of P(HB-HV) microcapsules. The following chapter then describes how microcapsule morphology in general, and microcapsule porosity in particular, can be regulated by blending the fabricating P(HB-HV) polymer with poly--caprolactone [PCL]. One revelation of these studies is the ability to generate uniformly microporous microcapsules from blends of various high molecular weight P(HB-HV) polymers with a low molecular weight form of PCL. These microcapsules are of particular interest because they may have the potential to facilitate the release of an encapsulated macromolecule via an aqueous diffusion mechanism which is not reliant on polymer degradation. In order to investigate this possibility, one such formulation is used in chapter five to encapsulate a wide range of different macromolecules, whose in vitro release behaviour is subsequently evaluated. The studies reported in chapter six centre on the preparation and characterization of hydrocortisone-loaded microspheres, prepared from a range of P(HB-HV) polymers, using a single emulsion-solvent evaporation process. In this chapter, the influence of the organic phase viscosity on the efficiency of drug encapsulation is the focus of initial investigations. Thereafter, it is shown how the strategies previously adopted for the regulation of microcapsule morphology can also be applied to single emulsion systems, with profound implications for the rate of drug release.
Resumo:
Aluminium alloys S1C, NS4, HE9, LM25 and the 'difficult' zinc containing U.S. specification alloy used for automobile bumpers (X-7046), have been successfully electroplated using pretreatments which utilized either conventional immersion, elevated temperature or electrolytic modified alloy zincate (M.A.Z.) deposits. Satisfactory adhesion in excess of 7•5 KN m -I was only achieved on X-7046 using an electrolytic M.A.Z. pretreatment. The limitations of simple zincate solutions were demonstrated. Growth of deposits ~as monitored using a weight loss technique and the morphology of the various deposits studied using scanning electron microscopy. The characteristics of a specific alloy and processing sequence selected had a significant influence on the growth and morphology of the N.A.Z. deposi t. These all affected subsequent adhesion of electrodeposited nickel. The advantages of double-dip sequences were confirmed. Superior adhesion was associated with a uniform, thin, fine grained M.A.Z. deposit which exhibited rapid and complete surface coverage of the aluminium alloy. The presence of this preferred type deposit did not guarantee adhesion because a certain degree of etching was essential. For a satisfactory combination of alloy and M.A.Z. pretreatment, there was a specific optimum film weight per unit area which resulted in maximum adhesion. An ideal film weight of 0•06 :!: 0•01 mg cm-2was determined for S1C. Different film weights were required for the other alloys due to variations in surface topography caused by pretreatment. S1C was the easiest alloy on which to achieve high bond strength. Peel adhesion was not directly related to tensile strength of the alloy. The highest adhesion value was obtained on S1C which had the lowest strength of the alloys studied. The characteristics of the failure surfaces after peeling depended on alloy type, adhesion level and pretreatment employed. Plated aluminium alloys exhibited excellent corrosion resistance when appropriately pretreated. The M.A.Z. layer was not preferentially attacked. There was a threshold value of adhesion below which corrosion performance ~a8 poor. Alloy type, pretreatment and coating system influenced corrosion performance. Microporous chromium gave better corrosion protection than decorative chromium.
Resumo:
Microporous, poly(ε-caprolactone) (PCL) matrices were loaded with the aminoglycoside antibiotic, gentamicin sulphate (GS) using the precipitation casting technique by suspension of powder in the PCL solution prior to casting. Improvements in drug loading from 1.8% to 6.7% w/w and distribution in the matrices were obtained by pre-cooling the suspension to 4°C. Gradual release of approximately 80% of the GS content occurred over 11 weeks in PBS at 37°C and low amounts of antibiotic were measured up to 20 weeks. The kinetics of release could be described effectively by the Higuchi model with the diffusion rate constant (D) increasing from of 1.7 to 5.1 μg/mg matrix/day0.5 as the drug loading increased from 1.4% to 8.3% w/w. GS-loaded PCL matrices retained anti-bacterial activity after immersion in PBS at 37°C over 14 days as demonstrated by inhibition of growth of S. epidermidis in culture. These findings recommend further investigation of precipitation-cast PCL matrices for delivery of hydrophilic molecules such as anti-bacterial agents from implanted, inserted or topical devices. © 2005 Elsevier B.V. All rights reserved.
Resumo:
The adsorption and diffusion of mixed hydrocarbon components in silicalite have been studied using molecular dynamic simulation methods. We have investigated the effect of molecular loadings and temperature on the diffusional behavior of both pure and mixed alkane components. For binary mixtures with components of similar sizes, molecular diffusional behavior in the channels was noticed to be reversed as loading is increased. This behavior was noticeably absent for components of different sizes in the mixture. Methane molecules in the methane/propane mixture have the highest diffusion coefficients across the entire loading range. Binary mixtures containing ethane molecules prove more difficult to separate compared to other binary components. In the ternary mixture, however, ethane molecules diffuse much faster at 400 K in the channel with a tendency to separate out quickly from other components. © 2005 Elsevier Inc. All rights reserved.
Resumo:
The quest for energy security and widespread acceptance of the anthropogenic origin of rising CO2 emissions and associated climate change from combusting fossil derived carbon sources, is driving academic and commercial research into new routes to sustainable fuels to meet the demands of a rapidly rising global population. Biodiesel is one of the most readily implemented and low cost, alternative source of transportation fuels to meet future societal demands. However, current practises to produce biodiesel via transesterification employing homogeneous acids and bases result in costly fuel purification processes and undesired pollution. Life-cycle calculations on biodiesel synthesis from soybean feedstock show that the single most energy intensive step is the catalytic conversion of TAGs into biodiesel, accounting for 87% of the total primary energy input, which largely arises from the quench and separation steps. The development of solid acid and base catalysts that respectively remove undesired free fatty acid (FFA) impurities, and transform naturally occurring triglycerides found within plant oils into clean biodiesel would be desirable to improve process efficiency. However, the microporous nature of many conventional catalysts limits their ability to convert bulky and viscous feeds typical of plant or algal oils. Here we describe how improved catalyst performance, and overall process efficiency can result from a combination of new synthetic materials based upon templated solid acids and bases with hierarchical structures, tailored surface properties and use of intensified process allowing continuous operation.
Resumo:
Mesoporous silica SBA-15 was synthesised by the true liquid crystal templating method, yielding a material with reduced microporosity compared with that produced by the more conventional liquid crystal templating route. Further advancements allow the generation of metal nanoparticle-doped SBA-15 materials with well-defined metal particle sizes, which posses potential as catalytic systems. © 2013 Elsevier Inc. All rights reserved.
Resumo:
In this review, we discuss the phenomenon of complementary macropore incorporation into mesoporous and/or microporous solids in order to enhance their catalytic performance in fuels and chemicals synthesis. © The Royal Society of Chemistry 2013.
Resumo:
Two modified Jacobsen-type catalysts were anchored onto an amine functionalised hexagonal mesoporous silica (HMS) using two distinct anchoring procedures: (i) one was anchored directly through the carboxylic acid functionalised diimine bridge fragment of the complex (CAT1) and (ii) the other through the hydroxyl group on the aldehyde fragment of the complex (CAT2), mediated by cyanuric chloride. The new heterogeneous catalyst, as well as the precedent materials, were characterised by elemental analyses, DRIFT, UV-vis, porosimetry and XPS which showed that the complexes were successfully anchored onto the hexagonal mesoporous silica. These materials acted as active heterogeneous catalysts in the epoxidation of styrene, using m-CPBA as oxidant, and α-methylstyrene, using NaOCl as oxidant. Under the latter conditions they acted also as enantioselective heterogeneous catalysts. Furthermore, when compared to the reaction run in homogeneous phase under similar experimental conditions, an increase in asymmetric induction was observed for the heterogenised CAT1, while the opposite effect was observed for the heterogenised CAT2, despite of CAT2 being more enantioselective than CAT1 in homogeneous phase. These results indicate that the covalent attachment of the Jacobsen catalyst through the diimine bridge leads to improved enantiomeric excess (%ee), whereas covalent attachment through one of the aldehyde fragments results in a negative effect in the %ee. Using α-methylstyrene and NaOCl as oxidant, heterogeneous catalyst reuse led to no significant loss of catalytic activity and enantioselectivity. © 2005 Elsevier Inc. All rights reserved.
Resumo:
Highly active mesoporous SO4/ZrO2/HMS (hexagonal mesoroporous silica) solid acid catalysts with tuneable sulphated zirconia (SZ) content have been prepared for the liquid phase isomerisation of α-pinene. The mesoporous HMS framework is preserved during the grafting process as evidenced by the X-ray diffraction (XRD) and porosimetry with all SO4/ZrO2/HMS materials possessing average pore-diameters ∼20 Å. XRD confirms the presence of a stabilized tetragonal phase of nanoparticulate ZrO2, with no evidence for zirconia phase separation or the formation of discrete crystallites, consistent with a uniform and highly dispersed SZ coating. The activity towards α-pinene isomerisation scales linearly with Zr loading, while the specific activities are an order of magnitude greater than attainable by conventional methodologies (∼1 versus 0.08 mol h−1 g Zr−1).
Resumo:
Porous tin films as anode for lithium-ion batteries are electrodeposited on graphite paper. Homogeneous tin films with significant void space accommodate the volume change during tin lithiation/delithiation. Through adjusting the electrodeposition currents and time, the morphologies and void space of tin films on graphite paper are controllable. At fixed electrodeposition current densities, the prolonged electrodeposition time plays the role in growing big tin particles and resulting the disappearance of void space among tin particles. The increased electrodeposition current plays the role to increase the quantity of tin seeds in thickness of tin film, and the void space among tin particles remains but the thick film limits its electrochemical performance. The tin films electrodeposited at an optimized current densities and for an optimized electrodeposition time, present the best electrochemical performance, because the tin nanoparticles are well dispersed on graphite substrate including void space. The tin film electrodeposited at 0.2 A cm-2 for 2 min shows the capacity of 1.0 mAh cm-2 after 50 charge/discharge cycles. The void space of tin film is very important for the best capacity and cyclic ability. The metallic tin film produced at 0.4 A cm-2 for 3 min remains the uniform and microporous structure after charge/discharge for 50 cycles.