68 resultados para micro-structure grating
em Aston University Research Archive
Resumo:
A 1.2(height)×125(depth)×500(length) micro-slot was engraved along a fiber Bragg grating by chemically assisted femtosecond laser processing. By filling epoxy and UV-curing, waveguide with plastic-core and silica-cladding was created, presenting high thermal responding coefficient of 211pm/°C.
Resumo:
A 1.2(height)×125(depth)×500(length) micro-slot was engraved along a fiber Bragg grating by chemically assisted femtosecond laser processing. By filling epoxy and UV-curing, waveguide with plastic-core and silica-cladding was created, presenting high thermal responding coefficient of 211pm/°C.
Resumo:
A 1.2(height)×125(depth)×500(length) micro-slot was engraved along a fiber Bragg grating by chemically assisted femtosecond laser processing. By filling epoxy and UV-curing, waveguide with plastic-core and silica-cladding was created, presenting high thermal responding coefficient of 211pm/°C.
Resumo:
A 1.2(height)×125(depth)×500(length) micro-slot was engraved along a fiber Bragg grating by chemically assisted femtosecond laser processing. By filling epoxy and UV-curing, waveguide with plastic-core and silica-cladding was created, presenting high thermal responding coefficient of 211pm/°C.
Resumo:
Fabrication and characterization of a UVinscribed fiber Bragg grating (FBG) with a micro-slot liquid core is presented. Femtosecond (fs) laser patterning/chemical etching technique was employed to engrave a micro-slot with dimensions of 5.74 μm(h) × 125 μm(w) × 1388.72 μm(l) across the whole grating. The device has been evaluated for refractive index (RI) and temperature sensitivities and exhibited distinctive thermal response and RI sensitivity beyond the detection limit of reported fiber gratings. This structure has not just been RI sensitive, but also maintained the robustness comparing with the bare core FBGs and long-period gratings with the partial cladding etched off. © 2012 Optical Society of America.
Resumo:
Smart structure sensors based on embedded fibre Bragg grating (FBG) arrays in aluminium alloy matrix by ultrasonic consolidation (UC) technique have been proposed and demonstrated successfully. The temperature, loading and bending responses of the embedded FBG arrays have been systematically characterized. The embedded FBGs exhibit an average temperature sensitivity of ~36 pm °C-1, which is three times higher than that of normal FBGs, a bending sensitivity of 0.73 nm/m-1 and a loading responsivity of ~0.1 nm kg-1 within the dynamic range from 0 kg to 3 kg. These initial experimental results clearly demonstrate that the UC produced metal matrix structures can be embedded with FBG sensor arrays to become smart structures with capabilities to monitor the structure operation and health conditions in applications.
Resumo:
A liquid core waveguide as a refractometer is proposed. Microtunnels were created in standard optical fiber using tightly focused femtoscond laser inscription and chemical etching. A 1.2(h)x125(d) x500(l) µm micro-slot engraved along a fiber Bragg grating (FBG) was used to construct liquid core waveguide by filling the slot with index matching oils. The device was used to measure refractive index and sensitivity up to 10- 6/pm was obtained.
Resumo:
We demonstrate a novel glucose sensor based on an optical fiber grating with an excessively tilted index fringe structure and its surface modified by glucose oxidase (GOD). The aminopropyltriethoxysilane (APTES) was utilized as binding site for the subsequent GOD immobilization. Confocal microscopy and fluorescence microscope were used to provide the assessment of the effectiveness in modifying the fiber surface. The resonance wavelength of the sensor exhibited red-shift after the binding of the APTES and GOD to the fiber surface and also in the glucose detection process. The red-shift of the resonance wavelength showed a good linear response to the glucose concentration with a sensitivity of 0.298nm(mg/ml)-1 in the very low concentration range of 0.0∼3.0mg/ml. Compared to the previously reported glucose sensor based on the GOD-immobilized long period grating (LPG), the 81° tilted fiber grating (81°-TFG) based sensor has shown a lower thermal cross-talk effect, better linearity and higher Q-factor in sensing response. In addition, its sensitivity for glucose concentration can be further improved by increasing the grating length and/or choosing a higher-order cladding mode for detection. Potentially, the proposed techniques based on 81°-TFG can be developed as sensitive, label free and micro-structural sensors for applications in food safety, disease diagnosis, clinical analysis and environmental monitoring.
Resumo:
We report a strong polarization dependent coupling behavior of fiber Bragg gratings with excessively tilted structures up to 81 . This unique property has been utilized to implement a novel twist sensor, showing high torsion sensitivity. The twist induced light coupling interchange between the two birefringence modes makes it possible to interrogate such a sensor using low-cost intensity demodulation technique.
Resumo:
A novel technology for simultaneous and independent measurement of dual parameters is proposed and experimented. The length of a single fibre Bragg grating (FBG) is divided into two parts. The temperature variation and another measurand can be measured independently and simultaneously, and the thermal effect can be erased with great ease.
Resumo:
The authors describe a detailed investigation on tilted fiber Bragg grating (TFBG) structures with tilted angles exceeding 45°. In contrast to the backward mode coupling mechanism of Bragg gratings with normal and small tilting structures, the ex-45° TFBGs facilitate the light coupling to the forward-propagating cladding modes. The authors have also theoretically and experimentally examined the mode coupling transition of TFBGs with small, medium, and large tilt angles. In particular, experiments are conducted to investigate the spectra and far-field distribution, as well as temperature, strain, and refractive-index sensitivities of ex-45° devices. It has been revealed that these ex-45° gratings exhibit ultralow thermal sensitivity. As in-fiber devices, they may be superior to conventional Bragg and long-period gratings when the low thermal cross sensitivity is required.
Resumo:
The optical layouts incorporating binary phase diffractive grating and a standard micro-objective were used for femtosecond microfabrication of periodical structures in fused silica. Two beams, generated in Talbot type interferometer, interfered on a surface and in the bulk of the sample. The method suggested allows better control over the transverse size of the grating pitch, and thus control the reflection strength of the waveguide or fibre grating. We present the examples of direct inscription of the sub-micrometer periodical structures using a 267 nm femtosecond laser radiation.
Resumo:
A novel technology for simultaneous and independent measurement of dual parameters is proposed and experimented. The length of a single fibre Bragg grating (FBG) is divided into two parts. The temperature variation and another measurand can be measured independently and simultaneously, and the thermal effect can be erased with great ease. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
We report a strong polarization dependent coupling behavior of fiber Bragg gratings with excessively tilted structures up to 81°. This unique property has been utilized to implement a novel twist sensor, showing high torsion sensitivity. The twist induced light coupling interchange between the two birefringence modes makes it possible to interrogate such a sensor using low-cost intensity demodulation technique. © 2006 IEEE.