16 resultados para methyl tert-butyl ether
em Aston University Research Archive
Resumo:
Lipidome profile of fluids and tissues is a growing field as the role of lipids as signaling molecules is increasingly understood, relying on an effective and representative extraction of the lipids present. A number of solvent systems suitable for lipid extraction are commonly in use, though no comprehensive investigation of their effectiveness across multiple lipid classes has been carried out. To address this, human LDL from normolipidemic volunteers was used to evaluate five different solvent extraction protocols [Folch, Bligh and Dyer, acidified Bligh and Dyer, methanol (MeOH)-tert-butyl methyl ether (TBME), and hexane-isopropanol] and the extracted lipids were analyzed by LC-MS in a high-resolution instrument equipped with polarity switching. Overall, more than 350 different lipid species from 19 lipid subclasses were identified. Solvent composition had a small effect on the extraction of predominant lipid classes (triacylglycerides, cholesterol esters, and phosphatidylcholines). In contrast, extraction of less abundant lipids (phosphatidylinositols, lyso-lipids, ceramides, and cholesterol sulfates) was greatly influenced by the solvent system used. Overall, the Folch method was most effective for the extraction of a broad range of lipid classes in LDL, although the hexane-isopropanol method was best for apolar lipids and the MeOH-TBME method was suitable for lactosyl ceramides. Copyright © 2013 by the American Society for Biochemistry and Molecular Biology, Inc.
Resumo:
The effects of melt stabilisers on the oxidative degradation of polyolefins (polypropylene, low density polyethylene) have been studied under a variety of processing conditions . The changes in the both chemical and physical properties of unstabilised polymers occurring during processing were found to be strongly dependent on the amount of oxygen present in the mixer. 2 ,6 ,3' ,5' -tetra-tert-butyl-4'-phenoxy-4-methylene-2, 5-cyclohexadiene-1- one (galvinoxyl), iodine, nitroxyl radicals and cupric stearate were found to be very efficient melt stabilisers particularly when processed in a restricted amount of air. The mechanisms of their melt stabilising action have been investigated and a common cyclical regenerative mechanism involving both chain-breaking electron acceptor (CB-A) and chain-breaking electron donor (CB-D) antioxidant activity was found to be involved in each case. 2,6,3',5'-tetra-tert-butyl-4'-hydroxy phenyl-4-rrethylene-2,5-cyclohexadiene- 1-one (hydrogalvinoxy1), 4-hydroxy, 2,2,6, 6-tetra methyl-N-hydroxy piperidine and hydrogen iodide were formed together with olefinic unsaturation in the substrates during the melt processing of the polymers containing galvinoxyl, 4-hydroxy, 2,2,6, 6-tetra methyl piperidine oxyl and iodine respectively. No bonding of the melt stabilisers to the polymers was found to occur. Cupric stearate was found to undergo a similar redox reaction during its action as a melt stabiliser with the formation of unsaturation in the polymer. Evidence for the above processes is presented. The behaviours of melt stabilisers in the subsequent thermal and photooxidation of polyolefins have also been studied. Galvinoxyl which is very effective under both mild and severe processing canditions has been found to be an effective antioxidant during thermal oxidation (oven ageing) and it is also moderately good. as a photo-stabiliser. Iodine and cupric stearate acted efficiently during melt stabilisation of polymers, however they were both ineffective as thermo-oxidative antioxidants and UV stabilisers. Although the melt stabilisation effectiveness of stable nitroxyl radicals (e.g. 4-hydroxy, 2,2,6,6-tetra methyl piperidineoxyl and Bis- (2,2,6 ,6-tetra methyl-4- piperidinyl-N-oxyl) sebacate) is not as high as that of galvinoxyl during processing particularly in excess of air, they have been found to be much more efficient as UV stabilisers for polyolefins. The reasons for this are discussed.
Resumo:
Various monoacrylic compounds containing a hindered phenol function (e.g.3,5-di-tert.-butyl-4-hydroxy benzyl alcohol, DBBA and vinyl-3-[3',5'-di-tert.-butyl-4-hydroxy phenyl] propionate, VDBP), and a benzophenone function (2-hydroxy-4-[beta hydroxy ethoxy] benzophenone, HAEB) were synthesised and used as reactive antioxidants (AO's) for polypropylene (PP). These compounds were reacted with PP melt in the presence of low concentration of a free radical generator such a peroxide (reactive processing) to produce bound-antioxidant concentrates. The binding reaction of these AO's onto PP was found to be low and this was shown to be mainly due to competing reactions such as homopolymerisation of the antioxidant. At high concentrations of peroxide, higher binding efficiency resulted, but, this was accompanied by melt degradation of the polymer. In a special reactive processing procedure, a di- or a trifunctional reactant (referred to as coagent), e.g.tri-methylol propane tri-acrylate, Tris, and Divinyl benzene, DVB, were used with the antioxidant and this has led to an enhanced efficiency of the grating reaction of antioxidants on the polymer in the melt. The evidence suggests that this is due to copolymerisation of the antioxidants with the coagent as well as grafting of the copolymers onto the polymer backbone. Although the 'bound' AO's containing a UV stabilising function showed lower overall stabilisation effect than the unbound analogues before extraction, they were still much more effective when subjected to exhaustive solvent extraction. Furthermore, a very effective synergistic stabilising activity when two reactive AO's containing thermal and UV stabilising functions e.g. DBBA and HAEB, were reactively processed with PP in the presence of a coagent. The stabilising effectiveness of such a synergist was much higher than that of the unbound analogues both before and after extraction. Analysis using the GPC technique of concentrates containing bound-DBBA processed in the presence of Tris coagent showed higher molecular weight (Mn), compared to that of a polymer processed without the coagent, but was still lower than that of the control processed PP with no additives. This indicates that Tris coagent may inhibit further melt degradation of the polymer. Model reactions of DBBA in liquid hydrocarbon (decalin) and analysis of the products using FTIR and NMR spectroscopy showed the formation of grafted DBBA onto decalin molecules as well as homopolymerisation of the AO. In the presence of Tris coagent, copolymerisation of DBBA with the Tris inevitably occured; which was followed by grafting of the copolymer onto the decalin, FTIR and NMR results of the polymer concentrates containing bound-DBBA processed with and without Tris, showed similar behaviour as the above model reactions. This evidence supports the effect of Tris in enhancing the efficiency of the reaction of DBBA in the polymer melt. Reactive procesing of HAEB in polymer melts exhibited crosslinking formation In the early stages of the reaction, however, in the final stage, the crosslinked structure was 'broken down' or rearranged to give an almost gel free polymer with high antioxidant binding efficiency.
Resumo:
The main aim of this work was to study the effect of two comonomers, trimethylolpropane trimethacrylate (TRIS) and divinylbenzene (DVB) on the nature and efficiency of grafting of two different monomers, glycidyl methacrylate (GMA) and maleic anhydride (MA) on polypropylene (P) and on natural rubber (NR) using reactive processing methods. Four different peroxides, benzoyl peroxide (BPO), dicumyl peroxide (DCP), 2,5-dimethyl-2,5-bis-(tert-butyl peroxy) hexane (t-101), and 1,1-di(tert-butylperoxy)-3,3,5-trimethyl cyclohexene (T-29B90) were examined as free radical initiators. An appropriate methodology was established and chemical composition and reactive processing parameters were examined and optimised. It was found that in the absence of the coagents DVB and TRIS, the grafting degree of GMA and MA increased with increasing peroxide concentration, but the level of grafting was low and the homopolymerisaton of GMA and the crosslinking of NR or chain scission of PP were identified as the main side reactions that competed with the desired grafting reaction in the polymers. At high concentrations of the peroxide T-101 (>0.02 mr) cross linking of NR and chain scission of PP became dominant and unacceptable. An attempt to add a reactive coagent, e.g. TRIS during grafting of GMA on natural rubber resulted in excessive crosslinking because of the very high reactivity of this comonomer with the C=C of the rubber. Therefore, the use of any multifunctional and highly reactive coagent such as TRIS, could not be applied in the grafting of GAM onto natural rubber. In the case of PP, however, the use of TRIS and DVB was shown to greatly enhance the grafting degree and reduce the chain scission with very little extent of monomer homopolymerisation taking place. The results showed that the grafting degree was increased with increasing GMA and MA concentrations. It was also found that T-101 was a suitable peroxide to initiate the grafting reaction of these monomers on NR and PP and the optimum temperature for this peroxide was =160°C. A very preliminary work was also conducted on the use of the functionalised-PP (f-PP) in the absence and presence of the two comonomers (f-PP-DVB or f-PP-TRIS) for the purpose of compatibilising PP-PBT blends through reactive blending. Examination of the morphology of the blends suggested that an effective compatibilisation has been achieved when using f-PP-DVB and f-PP-TRIS, however more work is required in this area.
Resumo:
Tuberculosis is one of the most devastating diseases in the world primarily due to several decades of neglect and an emergence of multidrug-resitance strains (MDR) of M. tuberculosis together with the increased incidence of disseminated infections produced by other mycobacterium in AIDS patients. This has prompted the search for new antimycobacterial drugs. A series of pyridine-2-, pyridine-3-, pyridine-4-, pyrazine and quinoline-2-carboxamidrazone derivatives and new classes of carboxamidrazone were prepared in an automated fashion and by traditional synthesis. Over nine hundred synthesized compounds were screened for their anti mycobacterial activity against M. fortutium (NGTG 10394) as a surrogate for M. tuberculosis. The new classes of amidrazones were also screened against tuberculosis H37 Rv and antimicrobial activities against various bacteria. Fifteen tested compounds were found to provide 90-100% inhibition of mycobacterium growth of M. tuberculosis H37 Rv in the primary screen at 6.25 μg mL-1. The most active compound in the carboxamidrazone amide series had an MIG value of 0.1-2 μg mL-1 against M. fortutium. The enzyme dihydrofolate reductase (DHFR) has been a drug-design target for decades. Blocking of the enzymatic activity of DHFR is a key element in the treatment of many diseases, including cancer, bacterial and protozoal infection. The x-ray structure of DHFR from M. tuberculosis and human DHFR were found to have differences in substrate binding site. The presence of glycerol molecule in the Xray structure from M. tuberculosis DHFR provided opportunity to design new antifolates. The new antifolates described herein were designed to retain the pharmcophore of pyrimethamine (2,4- diamino-5(4-chlorophenyl)-6-ethylpyrimidine), but encompassing a range of polar groups that might interact with the M. tuberculosis DHFR glycerol binding pockets. Finally, the research described in this thesis contributes to the preparation of molecularly imprinted polymers for the recognition of 2,4-diaminopyrimidine for the binding the target. The formation of hydrogen bonding between the model functional monomer 5-(4-tert-butyl-benzylidene)-pyrimidine-2,4,6-trione and 2,4-diaminopyrimidine in the pre-polymerisation stage was verified by 1H-NMR studies. Having proven that 2,4-diaminopyrimidine interacts strongly with the model 5-(4-tert-butylbenzylidene)- pyrimidine-2,4,6-trione, 2,4-diaminopyrimidine-imprinted polymers were prepared using a novel cyclobarbital derived functional monomer, acrylic acid 4-(2,4,6-trioxo-tetrahydro-pyrimidin-5- ylidenemethyl)phenyl ester, capable of multiple hydrogen bond formation with the 2,4- diaminopyrimidine. The recognition property of the respective polymers toward the template and other test compounds was evaluated by fluorescence. The results demonstrate that the polymers showed dose dependent enhancement of fluorescence emissions. In addition, the results also indicate that synthesized MIPs have higher 2,4-diaminopyrimidine binding ability as compared with corresponding non-imprinting polymers.
Resumo:
The main aim of this work was two fold, firstly to investigate the effect of a highly reactive comonomer, divinylbenzene (DVB), on the extent of melt grafting of glycidyl methacrylate (GMA) on ethylene-propylene rubber (EPR) using 2,5-dimethyl-2,5-bis-(tert-butyl peroxy) hexane (Trigon ox 101, Tl 01) as a free radical initiator, and to compare the results with a conventional grafting of the same monomer on EPR. To achieve this, the effect of processing conditions and chemical composition including the concentration of peroxide, GMA and DVB on the extent of grafting was investigated. The presence of the comonomer (DVB) in the grafting process resulted in a significant increase in the extent of the grafting using only a small concentration of peroxide. It was also found that the extent of grafting increased drastically with increasing the DVB concentration. Interestingly, in the comonomer system, the extent of the undesired side reaction, normally the homopolymerisation of GMA (polyGMA) was shown to have reduced tremendously and in most cases the level of polyGMA was immeasurable in the samples. Compared to a conventional EPR-g-GMACONV (in the absence of a comonomer), the presence of the comonomer DVB in the grafting system was shown to result in more branching and crosslinking (shown from an increase in melt flow index (MFI) and torque values) and this was paralleled by an increase in DVB concentration. In contrast, the extent of grafting in conventional system increased with increasing the peroxide concentration but the level of grafting was much lower than in the case of DVB. Homopolymerisation of GMA and excessive crosslinking of EPR became dominant at high peroxide concentration and this. reflects that the side reactions were favorable in the conventional grafting system. The second aim was to examine the effect of the in-situ functionalised EPR when used as a compatibiliser for binary blends. It was found that blending PET with functionalised EPR (ƒ-EPR) gave a significant improvement in terms of blend morphology as well as mechanical properties. The results showed clearly that, blending PET with ƒ-EPRDVB (prepared with DVB) was much more effective compared to the corresponding PET/ƒ-EPRCONV (without DVB) blends in which ƒ-EPRDVB having optimum grafting level of 2.1 wt% gave the most pronounced effect on the morphology and mechanical properties. On the other hand, blends of PET/ƒ-EPRDVB containing high GMA/DVB ratio was found to be unfavorable hence exhibited lower tensile properties and showed unfavorable morphology. The presence of high polyGMA concentration in ƒ-EPRCONV was found to create damaging effect on its morphology, hence resulting in reduced tensile properties (e.g. low elongation at break). However, the use of commercial terpolymers based on ethylene-methacrylate-glycidyl methacrylate (EM-GMA)or a copolymer of ethylene-glycidyl methacrylate (E-GMA) containing various GMA levels as compatibilisers in PET/EPR blends was found to be more efficient compared to PET/EPR/ƒ-EPR blends with the former blends showing finer morphology and high elongation at break. The high efficiency of the terpolymers or copolymers in compatibilising the PET/EPR blends is suggested to be partly, higher GMA content compared to the amount in ƒ-EPR and due to its low viscosity.
Resumo:
The main aim of this work was to investigate the effect of a highly reactive comonomer, divinylbenzene (DVB), on the extent of melt grafting of glycidyl methacrylate (GMA) on ethylene-propylene rubber (EPR) using 2,5-dimethyl-2,5-bis-(tert-butyl peroxy) hexane (Trigonox 101, T101) as a free radical initiator, and to compare the results with a conventional grafting of the same monomer on EPR. To achieve this, the effect of processing conditions and chemical composition including the concentration of peroxide, GMA and DVB on the extent of grafting was investigated. The presence of the comonomer (DVB) in the grafting process resulted in a significant increase in the extent of the grafting using only a small concentration of peroxide. It was also found that the extent of grafting increased drastically with the increasing DVB concentration. Interestingly, in the comonomer system, the extent of the undesired side reaction, normally the homopolymerisation of GMA (polyGMA) was shown to have reduced tremendously and in most cases the level of polyGMA was immeasurable in the samples. In contrast, the extent of grafting in conventional system increased with increasing the peroxide concentration but the level of grafting was much lower than in the case of DVB. Homopolymerisation of GMA and excessive crosslinking of EPR became dominant at high peroxide concentration and this reflects that the side reactions were favourable in the conventional grafting system.
Resumo:
A new synthetic method, applicable to the preparation of a wide range of hydrazine derivatives, is described. This involves the diborane reduction of a hydrazone, or, more conveniently, the reductive-condensation of a hydrazine and the appropriate aldehyde (or ketone). The method gives high yields and provides a particularly simple route to the relatively inaccessible 1,2-disubstituted hydrazines bearing a different group on each nitrogen. The new method has also been applied to the preparation of 1,2-disubstituted hydrazines with the same group on both nitrogens (via the azine), the very rare 1 ,2-disubstituted hydrazines bearing a tert-butyl group, trisubstituted hydrazines and monosubstituted hydrazines. Application of the reaction to the preparation of diaziridines has also been investigated. A mechanism for the reduction, supported by the isolation of a boron-containing intermediate, is suggested. Some limitations of the procedure are discussed. A general i.r. method of distinguishing the isomeric disubstituted hydrazines, as stable salts, has been developed. This has the advantages of speed and simplicity over previous methods. The mass spectra of a series of monosubstituted hydrazines, a series of 1,2-disubstituted hydrazines and some 1-benzoyl 2-alkylhydrazines have been examined in detail. The spectra are generally dominated byα -cleavage processes and the compounds show a variety of interesting rearrangement reactions. The mass spectra of some 1, 1-disubstituted hydrazines and some trisubstituted hydrazines have also been examined. Rearrangement processes occurring in the mass spectrum of tropylium fluoroborate have been examined. Similar rearrangements have been found in the spectrum of trityl fluoroborate and may be of general occurrence in the mass spectra of aromatic fluoroborates. Chemical shift values for some groups on hydrazine nitrogen are recorded and the results of tumour inhibitory tests on some hydrazines are also given.
Resumo:
The activity of a silica-supported BF3–methanol solid acid catalyst in the cationic polymerisation of an industrial aromatic C9 feedstock has been investigated. Reuse has been achieved under continuous conditions. Titration of the catalyst acid sites with triethylphosphine oxide (TEPO) in conjunction with 31P MAS NMR shows the catalyst to have two types of acid sites. Further analysis with 2,6 di-tert-butyl-4-methylpyridine (DBMP) has revealed the majority of these acid sites to be Brønsted in nature. The role of α-methylstyrene in promoting resin polymerisation via chain transfer is proposed.
Resumo:
Two simple, reproducible methods of preparing evenly distributed Au nanoparticle containing mesoporous silica monoliths are investigated. These Au nanoparticle containing monoliths are subsequently investigated as flow reactors for the selective oxidation of cyclohexene. In the first strategy, the silica monolith was directly impregnated with Au nanoparticles during the formation of the monolith. The second approach was to pre-functionalize the monolith with thiol groups tethered within the silica mesostructure. These can act as evenly distributed anchors for the Au nanoparticles to be incorporated by flowing a Au nanoparticle solution through the thiol functionalized monolith. Both methods led to successfully achieving even distribution of Au nanoparticles along the length of the monolith as demonstrated by ICP-OES. However, the impregnation method led to strong agglomeration of the Au nanoparticles during subsequent heating steps while the thiol anchoring procedure maintained the nanoparticles in the range of 6.8 ± 1.4 nm. Both Au nanoparticle containing monoliths as well as samples with no Au incorporated were tested for the selective oxidation of cyclohexene under constant flow at 30 °C. The Au free materials were found to be catalytically inactive with Au being the minimum necessary requirement for the reaction to proceed. The impregnated Au-containing monolith was found to be less active than the thiol functionalized Au-containing material, attributable to the low metal surface area of the Au nanoparticles. The reaction on the thiol functionalized Au-containing monolith was found to depend strongly on the type of oxidant used: tert-butyl hydroperoxide (TBHP) was more active than H2O2, likely due to the thiol induced hydrophobicity in the monolith.
Resumo:
Two antioxidant modified layered double hydroxides (AO-LDHs) were successfully prepared by theintercalation of 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid (IrganoxCOOH) and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) in the layered structure of LDH. It was foundthat by anchoring the phenolic moieties to the LDH layers the antioxidant power is retained in the caseof Trolox, and even amplified in the case of IrganoxCOOH. A small amount of the two AO-LDHs wasincorporated into poly(lactic acid), PLA, by solution mixing and melt extrusion. The thermo-oxidativestability of the composites was compared with that of the neat PLA and PLA containing free AOs. SECanalysis indicates that, after a controlled period of ageing, both the AO-LDHs protect the PLA fromchain scission. The oxidation induction time (OIT, DSC) at 230 °C shows also the beneficial effects ofthe presence of the functional filler in the polymer matrix. Further, results from a preliminary migrationtest suggest that the AO species have a low tendency to migrate away from the AO-LDHs embedded inthe polymer matrix thus keeping the AO protected inside the nanofiller layers thereby remaining activefor a longer time.
Resumo:
Statins possess anti-inflammatory effects that may contribute to their ability to slow atherogenesis, whereas nitric oxide (NO) also influences inflammatory cell adhesion. This study aimed to determine whether a novel NO-donating pravastatin derivative, NCX 6550 [(1S-[1∝(ßS*,dS*),2∝,6a∝,8ß-(R*),8a∝]]-1,2,6,7,8,8a-hexahydro-ß,δ,6-trihydroxy-2-methyl-8-(2-methyl-1-oxobutoxy)-1-naphthalene-heptanoic acid 4-(nitrooxy)butyl ester)], has greater anti-inflammatory properties compared with pravastatin in normal and atherosclerotic apolipoprotein E receptor knockout (ApoE-/-) mice. C57BL/6 and ApoE-/- mice were administered pravastatin (40 mg/kg), NCX 6550 (48.5 mg/kg), or vehicle orally for 5 days. Ex vivo studies assessed splenocyte adhesion to arterial segments and splenocyte reactive oxygen species (ROS) generation. NCX 6550 significantly reduced splenocyte adhesion to artery segments in both C57BL/6 (8.8 ± 1.9% versus 16.6 ± 6.7% adhesion; P < 0.05) and ApoE-/- mice (9.3 ± 2.9% versus 23.4 ± 4.6% adhesion; P < 0.05) concomitant with an inhibition of endothelial intercellular adhesion molecule-1 expression. NCX 6550 also significantly reduced phorbol 12-myristate 13-acetate-induced ROS production that was enhanced in isolated ApoE-/- splenocytes. Conversely, pravastatin had no significant effects on adhesion in normal or ApoE-/- mice but reduced the enhanced ROS production from ApoE-/- splenocytes. In separate groups of ApoE-/- mice, NCX 6550 significantly enhanced endothelium-dependent relaxation to carbachol in aortic segments precon-tracted with phenylephrine (-logEC50, 6.37 ± 0.37) compared with both vehicle-treated (-logEC50, 5.81 ± 0.15; P < 0.001) and pravastatin-treated (-logEC50, 5.57 ± 0.45; P < 0.05) mice. NCX 6550 also significantly reduced plasma monocyte chemoattractant protein-1 levels (648.8 pg/ml) compared with both vehicle (1191.1 pg/ml; P < 0.001) and pravastatin (847 ± 71.0 pg/ml; P < 0.05) treatment. These data show that NCX 6550 exerts superior anti-inflammatory actions compared with pravastatin, possibly through NO-related mechanisms.
Resumo:
This work follows a feasibility study (187) which suggested that a process for purifying wet-process phosphoric acid by solvent extraction should be economically viable. The work was divided into two main areas, (i) chemical and physical measurements on the three-phase system, with or without impurities; (ii) process simulation and optimization. The object was to test the process technically and economically and to optimise the type of solvent. The chemical equilibria and distribution curves for the system water - phosphoric acid - solvent for the solvents n-amyl alcohol, tri-n-butyl phosphate, di-isopropyl ether and methyl isobutyl ketone have been determined. Both pure phosphoric acid and acid containing known amounts of naturally occurring impurities (Fe P0 4 , A1P0 4 , Ca3(P04)Z and Mg 3(P0 4 )Z) were examined. The hydrodynamic characteristics of the systems were also studied. The experimental results obtained for drop size distribution were compared with those obtainable from Hinze's equation (32) and it was found that they deviated by an amount related to the turbulence. A comprehensive literature survey on the purification of wet-process phosphoric acid by organic solvents has been made. The literature regarding solvent extraction fundamentals and equipment and optimization methods for the envisaged process was also reviewed. A modified form of the Kremser-Brown and Souders equation to calculate the number of contact stages was derived. The modification takes into account the special nature of phosphoric acid distribution curves in the studied systems. The process flow-sheet was developed and simulated. Powell's direct search optimization method was selected in conjunction with the linear search algorithm of Davies, Swann and Campey. The objective function was defined as the total annual manufacturing cost and the program was employed to find the optimum operating conditions for anyone of the chosen solvents. The final results demonstrated the following order of feasibility to purify wet-process acid: di-isopropyl ether, methylisobutyl ketone, n-amyl alcohol and tri-n-butyl phosphate.
Resumo:
This thesis is primarily concerned with the synthesis and polymerization of 5-methyl-1;3, 2-dioxathiolan-4-one-2-oxide (lactic acid anhydrosulphite (LAAS)) using anionic initiators under various conditions. Poly(lactic acid) is a biodegradable polymer which finds many uses in biomedical applications such as drug-delivery and wound-support systems. For such applications it is desirable to produce polymers having predictable molecular weight distributions and crystallinity, The use of anionic initiators offers a potential route to the creation of living polymers. The synthesis of LAAS was achieved by means of an established route though the procedure was modified to some extent and a new method of purification of the monomer using copper oxides was introduced, Chromatographic purification methods were also examined but found to be ineffective. An unusual impurity was discovered in some syntheses and this was identified by means of 1H and 13C NMR, elemental analysis and GC-MS. Since poly-α-esters having hydroxyl-bearing substituents might be expected to have high equilibrium water contents and hence low surface tension characteristics which might aid bio-compatibility, synthesis of gluconic acid anhydrosulphite was also attempted and the product characterised by 1H and 13C NMR. The kinetics of the decomposition of lactic acid anhydrosulphite by lithium tert-butoxide in nitrobenzene has been examined by means of gas evolution measurements. The kinetics of the reaction with potassium tert-butoxide (and also sec-butyl lithium) in tetrahydrofuran has been studied using calorimetric techniques. LAAS was block co-polymerized with styrene and also with 1,3-butadiene in tetrahydrofuran (in the latter case a statistical co-polymer was also produced).
Resumo:
The cationic polymerisation of various monomers, including cyclic ethers bearing energetic nitrate ester (-ON02) groups, substituted styrenes and isobutylene has been investigated. The main reaction studied has been the ring-opening polymerisation of 3- (nitratomethyl)-3-methyl oxetane (NIMMO) using the alcohol/BF3.0Et2 binary initiator system. A series of di-, tri- and tetrafunctional telechelic polymers has been synthesised. In order to optimise the system, achieve controlled molecular weight polymers and understand the mechanism of polymerisation the effects of certain parameters on the molecular weight distribution, as determined by Size Exclusion Chromatography, have been examined. This shows the molecular weight achieved depends on a combination of factors including -OH concentration, addition rate of monomer and, most importantly, temperature. A lower temperature and OH concentration tends to produce higher molecular weight, whereas, slower addition rates of monomer, either have no significant effect or produce a lower molecular weight polymer. These factors were used to increase the formation of a cyclic oligomer, by a side reaction, and suggest, that the polymerisation of NIMMO is complicated with endbiting and back biting reactions, along with other transfer/termination processes. These observations appear to fit the model of an active-chain end mechanism. Another cyclic monomer, glycidyl nitrate (GLYN), has been polymerised by the activated monomer mechanism. Various other monomers have been used to end-cap the polymer chains to produce hydroxy ends which are expected to form more stable urethane links, than the glycidyl nitrate ends, when cured with isocyanates. A novel monomer, butadiene oxide dinitrate (BODN), has been prepared and its homopolymerisation and copolymerisation with GL YN studied. In concurrent work the carbocationic polymerisations of isobutylene or substituted styrenes have been studied. Materials with narrow molecular weight distributions have been prepared using the diphenyl phosphate/BCl3 initiator. These systems and monomers are expected to be used in the synthesis of thermoplastic elastomers.