3 resultados para metamorphic

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three metamorphic aureoles around intrusions of the Caledonian 'Newer Granite' suite are described. Each represents a different orogenic environment. The Strontian complex is intruded into sillimanite grade Moinian metasediments at the core of the orogen. The aureole comprises three zones; a transitional muscovite + sillimanite + K-feldspar zone, a sillimanite + K-feldspar zone and an inner cordierite + K-feldspar zone. Contact migmatization occurs in the inner part of the aureole. Zoning profiles from garnets in both regional and aureole assemblages show retrograde Mn-rich rims. Fe and Mg compositions are re-equilibrated to contact conditions. Apparent re-equilibration of Ca compositions results from increasingly ideal solid solution behaviour of Ca in plagioclase and garnet with increasing temperature. Temperatures of 690°C at 4.1 kbar (XH2O = 0.53) are estimated in the cordierite + K-feldspar zone, dropping to 630°C (XH2O = 0.69) at the sillimanite + K-feldspar isograd. The zones increase in width to the east, influenced by the regional thermal gradient at the time of intrusion. The timer-scale of the contact event, t2, relative to the regional, tl, - is estimated as t2/t1 = 101.1+ -0.7 and is consistent with Intrusion at an early stage of regional uplift and cooling. The Foyers complex intrudes Moinian rocks at a higher structural level. Regional assemblages range from garnet to sillimanite grade. Three contact zones are recognised; a sillimanite zone, a sillimanite + K-feldspar zone and an inner cordierite + K-feldspar zone. The limit of the aureole is marked by the breakdown of garnet which shows disequilibrium, both texturally, and in complex zoning profiles, within it. Temperatures of 660°C at 3.9 kbar (XH20 = 0.14) are estimated in the cordierite + K-feldspar zone? The Dalbeattie complex is at the margin of the orogen, intruded into low grade Silurian metasediments. Two zones are recognised; a biotite zone and an inner hornblende zone. Cordierite and diopside are present in the inner zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classification of metamorphic rocks is normally carried out using a poorly defined, subjective classification scheme making this an area in which many undergraduate geologists experience difficulties. An expert system to assist in such classification is presented which is capable of classifying rocks and also giving further details about a particular rock type. A mixed knowledge representation is used with frame, semantic and production rule systems available. Classification in the domain requires that different facets of a rock be classified. To implement this, rocks are represented by 'context' frames with slots representing each facet. Slots are satisfied by calling a pre-defined ruleset to carry out the necessary inference. The inference is handled by an interpreter which uses a dependency graph representation for the propagation of evidence. Uncertainty is handled by the system using a combination of the MYCIN certainty factor system and the Dempster-Shafer range mechanism. This allows for positive and negative reasoning, with rules capable of representing necessity and sufficiency of evidence, whilst also allowing the implementation of an alpha-beta pruning algorithm to guide question selection during inference. The system also utilizes a semantic net type structure to allow the expert to encode simple relationships between terms enabling rules to be written with a sensible level of abstraction. Using frames to represent rock types where subclassification is possible allows the knowledge base to be built in a modular fashion with subclassification frames only defined once the higher level of classification is functioning. Rulesets can similarly be added in modular fashion with the individual rules being essentially declarative allowing for simple updating and maintenance. The knowledge base so far developed for metamorphic classification serves to demonstrate the performance of the interpreter design whilst also moving some way towards providing a useful assistant to the non-expert metamorphic petrologist. The system demonstrates the possibilities for a fully developed knowledge base to handle the classification of igneous, sedimentary and metamorphic rocks. The current knowledge base and interpreter have been evaluated by potential users and experts. The results of the evaluation show that the system performs to an acceptable level and should be of use as a tool for both undergraduates and researchers from outside the metamorphic petrography field. .