11 resultados para metabolism of sugars in plants
em Aston University Research Archive
Resumo:
The treatment of effluents produced during the manufacture of metallurgical coke is normally carried out using the activated sludge process. The efficiency of activated sludges in purifying coke oven effluent depends largely on the maintenance of species of micro-organisms which destroy thiocyanate. The composition, production, toxicity and treatment of coke oven effluent at Corby steelworks are described. A review is presented which follows the progress made towards identifying and monitoring the species of bacteria which destroy thiocyanate in biological treatment plants purifying coke oven effluents. In the present study a search for bacteria capable of destroying thiocyanate led to the isolation of a species of bacteria, identified as Pseudomonas putida, which destroyed thiocyanate in the presence of succinate; this species had not previously been reported to use thiocyanate. Washed cell suspensions of P. putida destroyed phenol and thiocyanate simultaneously and thiocyanate destruction was not suppressed by pyridine, aniline or catechol at the highest concentrations normally encountered in coke oven effluent. The isolate has been included, as N.C.I.B. 11198, in the National Collection of Industrial Bacteria, Torrey Research Station, Aberdeen. Three other isolates, identified as Achromobacter sp., Thiobacillus thioparus and T. denitrificans, were also confirmed to destroy thi.ocyanate. A technique has been developed for monitoring populations of different species of bacteria in activated sludges. Application of this technique to laboratory scale and full scale treatment plants at Corby showed that thiobacilli were usually not detected; thiobacilli were el~inated during the commissioning period of the full scale plant. However experiments using a laboratory scale plant indicated that during a period of three weeks an increase in the numbers of thiobacilli might have contributed to an improvement in plant performance. Factors which might have facilitated the development of thiobacilli are discussed. Large numbers of fluorescent pseudomonads capable of using thiocyanate were sometimes detected in the laboratory scale plant. The possibility is considered that catechol or other organic compounds in the feed-liquor might have stimulated fluorescent pseudmonads. Experiments using the laboratory scale plant confirmed that deteriorations in the efficiency of thiocyanate destruction were sometimes caused by bulking sludges, due to the excessive growth of fungal floes. Increased dilution of the coke oven effluent was a successful remedy to this difficulty. The optimum operating conditions recommended by the manufacturer of the full scale activated sludge plant at Corby are assessed and the role of bacterial monitoring in a programme of regular monitoring tests is discussed in relation to the operation of activated sludge plants treating coke oven effluents.
Resumo:
Using ionspray tandem mass spectrometry the glutathione conjugate SMG was identified as a biliary metabolite of DMF in rats (0.003% of a dose of 5OOmg/kg DMF i.p.). Formation of this metabolite was increased five fold after induction of CYP2E1 by acetone, and was inhibited to 20% of control values following pretreatment with disulfrram. Generation of SMG from DMF in vivo was shown to exhibit a large kinetic deuterium isotope effect (KWKD=10.1 ± 1.3), which most likely represents the product of 2 discrete isotope effects on N-demethylation and formyl oxidation reactions.The industrial solvent N,N-dimethylformamide (DMF) and the investigational anti-tumour agent N-methylformamide (NMF) cause liver damage in rodents and humans. The hepatotoxicity of N-alkylformamides is linked to their metabolism to N-alkylcarbamic acid thioesters. The enzymatic details of this pathway were investigated. Hepatocytes isolated from BALB/c mice which had been pretreated with acetone, an inducer of the cytochrome P-450 isozyme CYP2E1, were incubated with NMF (10mM). NMF caused extensive toxicity (> 90% ) as determined by lactate dehydrogenase (LDH) release, compared to cells from untreated animals. Incubation of liver cells with NMF for 6 hrs caused 60±17% LDH release whilst in the presence of DMSO (10mM), an alternative substrate for CYP2E1, LDH release was reduced to 20±10% . The metabolism of NMF to S-(N-methylcarbamoyl)glutathione (SMG) was measured in incubates with liver microsomes from mice, rats or humans. Metabolism of NMF was elevated in microsomes isolated from rats and mice pretreated with acetone, by 339% and 183% respectively. Pretreatment of animals with 4-methylpyrazole induced the metabolism of NMF to 280% by rat microsomes, but was without effect on NMF metabolism by mouse microsomes. The CYP2E1 inhibitors or alternative substrates diethyl dithiocarbamate (DEDTC), p-nitrophenol (PNP) and dimethyl sulphoxide (DMSO) strongly inhibited the metabolism of NMF in suspensions of rat liver microsomes, at concentrations which did not effect aminopyrine N-demethylation. The rate of metabolism of NMF to SMG in human microsomes correlated (r> 0.8) with the rate of metabolism of chlorzoxazone, a CYP2E1 probe. A polyclonal antibody against rat CYP2E1 (10mg/nmol P-450) inhibited NMF metabolism in microsomes from rats and humans by 75% and 80% , respectively. The amount of immunoblottable enzyme in human microsomes, determined using an anti-rat CYP2E1 antibody, correlated with the rate of NMF metabolism (r> 0.8). Purified rat CYP2E1 catalysed the generation of SMG from NMF. Formation of the DMF metabolite N-hydroxymethyl-N-methylformamide (HMMF) in incubations with rat liver microsomes was elevated by 200% following pretreatment of animals with acetone. Co-incubation with DEDTC (100μM) inhibited HMMF generation from DMF by 88% . Co-incubation of DMF (10mM) with NMF (1mM) inhibited the formation of SMG by 95% . A polyclonal antibody against rat CYP2E1 (10mg/nmol P-450) inhibited generation of HMMF in incubates with rat and human liver microsomes by 68.4% and 67.5% , respectively. Purified rat CYP2E1 catalysed the generation of HMMF from DMF. Using ionspray tandem mass spectrometry the glutathione conjugate SMG was identified as a biliary metabolite of DMF in rats (0.003% of a dose of 5OOmg/kg DMF i.p.). Formation of this metabolite was increased five fold after induction of CYP2E1 by acetone, and was inhibited to 20% of control values following pretreatment with disulfrram. Generation of SMG from DMF in vivo was shown to exhibit a large kinetic deuterium isotope effect (KHKD=10.1 ± 1.3), which most likely represents the product of 2 discrete isotope effects on N-demethylation and formyl oxidation reactions.
Resumo:
Gastric absorption of feruloylquinic acid and di-O-caffeoylquinic acid analogs has never been investigated despite their potential contribution to the proposed beneficial health effects leading to reduced risk of type 2 diabetes. Using a cultured gastric epithelial model, with an acidic apical pH, the relative permeability coefficients (P(app)) and metabolic fate of a series of chlorogenic acids (CGAs) were investigated. Mechanistic studies were performed in the apical to basal direction and demonstrated differential rates of absorption for different CGA subgroups. For the first time, we show intact absorption of feruloylquinic acids and caffeoylquinic acid lactones across the gastric epithelium (P(app) ~ 0.2 cm/s). Transport seemed to be mainly by passive diffusion, because good linearity was observed over the incubation period and test concentrations, and we speculate that a potential carrier-mediated component may be involved in uptake of certain 4-acyl CGA isomers. In contrast, absorption of intact di-O-caffeoylquinic acids was rapid (P(app) ~ 2-10 cm/s) but nonlinear with respect to time and concentration dependence, which was potentially limited by interaction with an efflux transporter and/or pH gradient dependence. For the first time, methylation is shown in gastric mucosa. Furthermore, isoferulic acid, dimethoxycinnamic acid, and ferulic acid were identified as novel gastric metabolites of CGA biotransformation. We propose that the stomach is the first location for the release of hydroxycinnamic acids, which could explain their early detection after coffee consumption.
Estimation of productivity in Korean electric power plants:a semiparametric smooth coefficient model
Resumo:
This paper analyzes the impact of load factor, facility and generator types on the productivity of Korean electric power plants. In order to capture important differences in the effect of load policy on power output, we use a semiparametric smooth coefficient (SPSC) model that allows us to model heterogeneous performances across power plants and over time by allowing underlying technologies to be heterogeneous. The SPSC model accommodates both continuous and discrete covariates. Various specification tests are conducted to compare performance of the SPSC model. Using a unique generator level panel dataset spanning the period 1995-2006, we find that the impact of load factor, generator and facility types on power generation varies substantially in terms of magnitude and significance across different plant characteristics. The results have strong implication for generation policy in Korea as outlined in this study.
Estimation of productivity in Korean electric power plants:a semiparametric smooth coefficient model
Resumo:
This paper analyzes the impact of load factor, facility and generator types on the productivity of Korean electric power plants. In order to capture important differences in the effect of load policy on power output, we use a semiparametric smooth coefficient (SPSC) model that allows us to model heterogeneous performances across power plants and over time by allowing underlying technologies to be heterogeneous. The SPSC model accommodates both continuous and discrete covariates. Various specification tests are conducted to assess the performance of the SPSC model. Using a unique generator level panel dataset spanning the period 1995-2006, we find that the impact of load factor, generator and facility types on power generation varies substantially in terms of magnitude and significance across different plant characteristics. The results have strong implications for generation policy in Korea as outlined in this study.