9 resultados para mesoporous material
em Aston University Research Archive
Resumo:
Copper(II) acetylacetonate was anchored onto a hexagonal mesoporous silica (HMS) material using a two-step procedure: (i) functionalisation of the surface hydroxy groups with (3-aminopropyl)triethoxysilane (AMPTSi) and then (ii) anchoring of the copper(II) complex through Schiff condensation with free amine groups, using two different metal complex loadings. Upon the first step, nitrogen elemental analysis, XPS and DRIFT showed the presence of amine groups on the surface of the HMS material, and porosimetry indicated that the structure of the mesoporous material remained unchanged, although a slight decrease in surface area was observed. Atomic absorption, XPS and DRIFT showed that copper(II) acetylacetonate was anchored onto the amine-functionalised HMS by Schiff condensation between the free amine groups and the carbonyl groups of the copper(II) complex; using EPR an NO3 coordination sphere was proposed for the anchored copper(II) complex. The new [Cu(acac)2]-AMPTSi/HMS materials were tested in the aziridination of styrene at room temperature, using PhI=NTs as nitrogen source and acetonitrile as solvent. The styrene conversion and total TON of the heterogeneous phase reaction are higher than those of the same reaction catalysed in homogeneous phase by [Cu(acac)2]; nevertheless, the initial activity decreases and the reaction time increases due to substrate and product diffusion limitations. The heterogeneous catalyst showed a successive slight decrease in catalytic activity when reused for two more times. © Wiley-VCH Verlag GmbH & Co. KGaA, 2006.
Resumo:
The grafting and sulfation of zirconia conformal monolayers on SBA-15 to create mesoporous catalysts of tunable solid acid/base character is reported. Conformal zirconia and sulfated zirconia (SZ) materials exhibit both Brönsted and Lewis acidity, with the Brönsted/Lewis acid ratio increasing with film thickness and sulfate content. Grafted zirconia films also exhibit amphoteric character, whose Brönsted/Lewis acid site ratio increases with sulfate loading at the expense of base sites. Bilayer ZrO2/SBA-15 affords an ordered mesoporous material with a high acid site loading upon sulfation and excellent hydrothermal stability. Catalytic performance of SZ/SBA-15 was explored in the aqueous phase conversion of glucose to 5-HMF, delivering a 3-fold enhancement in 5-HMF productivity over nonporous SZ counterparts. The coexistence of accessible solid basic/Lewis acid and Brönsted acid sites in grafted SZ/SBA-15 promotes the respective isomerization of glucose to fructose and dehydration of reactively formed fructose to the desired 5-HMF platform chemical.
Resumo:
We have investigated the microstructure and bonding of two biomass-based porous carbon chromatographic stationary phase materials (alginic acid-derived Starbon® and calcium alginate-derived mesoporous carbon spheres (AMCS) and a commercial porous graphitic carbon (PGC), using high resolution transmission electron microscopy, electron energy loss spectroscopy (EELS), N2 porosimetry and X-ray photoelectron spectroscopy (XPS). The planar carbon sp -content of all three material types is similar to that of traditional nongraphitizing carbon although, both biomass-based carbon types contain a greater percentage of fullerene character (i.e. curved graphene sheets) than a non-graphitizing carbon pyrolyzed at the same temperature. This is thought to arise during the pyrolytic breakdown of hexauronic acid residues into C5 intermediates. Energy dispersive X-ray and XPS analysis reveals a homogeneous distribution of calcium in the AMCS and a calcium catalysis mechanism is discussed. That both Starbon® and AMCS, with high-fullerene character, show chromatographic properties similar to those of a commercial PGC material with extended graphitic stacks, suggests that, for separations at the molecular level, curved fullerene- like and planar graphitic sheets are equivalent in PGC chromatography. In addition, variation in the number of graphitic layers suggests that stack depth has minimal effect on the retention mechanism in PGC chromatography. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Zirconium-containing periodic mesoporous organosilicas (Zr-PMOs) with varying framework organic content have been synthesized through a direct synthesis method. These materials display the excellent textural properties of the analogous inorganic solid acid Zr-SBA-15 material. However, the substitution of silica by organosilicon species provides a strong hydrophobic character. This substitution leads to meaningful differences in the environment surrounding the zirconium metal sites, leading the modification of the catalytic properties of these materials. Although lower metal incorporation is accomplished in the final materials, leading to a lower population of metal sites, hydrophobisation leads to an impressive beneficial effect on the intrinsic catalytic activity of the zirconium sites in biodiesel production by esterification/transesterification of free fatty acid -containing feedstock. Moreover, the catalytic activity of the highly hybridised materials is hardly affected in presence of large amounts of water, confirming their very good water-tolerance. This makes Zr-PMO materials interesting catalysts for biodiesel production from highly acidic water-containing feedstock. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
A Jacobsen-type catalyst was anchored onto an amine functionalised hexagonal mesoporous silica (HMS) through the diimine bridge fragment of the complex. The new heterogeneous catalyst, as well as the precedent materials, were characterised by elemental analyses, FTIR-DRIFT, UV-vis, porosimetry and XPS which showed that the complex was successfully anchored. This material was active in the epoxidation of styrene and α-methylstyrene in dichloromethane at 0°C using, respectively, m-CPBA/NMO and NaOCl. With the former substrate no asymmetric induction was found in the epoxide, whereas with the latter substrate higher %ee was found than in homogeneous phase. Using the latter experimental conditions, catalyst reuse led to no significant loss of catalytic activity and enantioselectivity. © 2005 Elsevier B.V. All rights reserved.
Resumo:
In recent years, surface plasmon-induced photocatalytic materials with tunable mesoporous framework have attracted considerable attention in energy conversion and environmental remediation. Herein we report a novel Au nanoparticles decorated mesoporous graphitic carbon nitride (Au/mp-g-C3N4) nanosheets via a template-free and green in situ photo-reduction method. The synthesized Au/mp-g-C3N4 nanosheets exhibit a strong absorption edge in visible and near-IR region owing to the surface plasmon resonance effect of Au nanoparticles. More attractively, Au/mp-g-C3N4 exhibited much higher photocatalytic activity than that of pure mesoporous and bulk g-C3N4 for the degradation of rhodamine B under sunlight irradiation. Furthermore, the photocurrent and photoluminescence studies demonstrated that the deposition of Au nanoparticles on the surface of mesoporous g-C3N4 could effectively inhibit the recombination of photogenerated charge carriers leading to the enhanced photocatalytic activity. More importantly, the synthesized Au/mp-g-C3N4 nanosheets possess high reusability. Hence, Au/mp-g-C3N4 could be promising photoactive material for energy and environmental applications.
Resumo:
Herein we demonstrate a facile template-free sonochemical strategy to synthesize mesoporous g-C3N4 with a high surface area and enhanced photocatalytic activity. The TEM and nitrogen adsorption–desorption studies confirm mesoporous structure in g-C3N4 body. The photocatalytic activity of mesoporous g-C3N4 is almost 5.5 times higher than that of bulk g-C3N4 under visible-light irradiation. The high photocatalytic performance of the mesoporous g-C3N4 was attributed to the much higher specific surface area, efficient adsorption ability and the unique interfacial mesoporous structure which can favour the absorption of light and separation of photoinduced electron–hole pairs more effectively. A possible photocatalytic mechanism was discussed by the radicals and holes trapping experiments. Interestingly, the synthesized mesoporous g-C3N4 possesses high reusability. Hence the mesoporous g-C3N4 can be a promising photocatalytic material for practical applications in water splitting as well as environmental remediation.
Resumo:
Porosity development of mesostructured colloidal silica nanoparticles is related to the removal of the organic templates and co-templates which is often carried out by calcination at high temperatures, 500-600 °C. In this study a mild detemplation method based on the oxidative Fenton chemistry has been investigated. The Fenton reaction involves the generation of OH radicals following a redox Fe3+/Fe2+ cycle that is used as catalyst and H2O2 as oxidant source. Improved material properties are anticipated since the Fenton chemistry comprises milder conditions than calcination. However, the general application of this methodology is not straightforward due to limitations in the hydrothermal stability of the particular system under study. The objective of this work is three-fold: 1) reducing the residual Fe in the resulting solid as this can be detrimental for the application of the material, 2) shortening the reaction time by optimizing the reaction temperature to minimize possible particle agglomeration, and finally 3) investigating the structural and textural properties of the resulting material in comparison to the calcined counterparts. It appears that the Fenton detemplation can be optimized by shortening the reaction time significantly at low Fe concentration. The milder conditions of detemplation give rise to enhanced properties in terms of surface area, pore volume, structural preservation, low Fe residue and high degree of surface hydroxylation; the colloidal particles are stable during storage. A relative particle size increase, expressed as 0.11%·h-1, has been determined.
Resumo:
A mild protocol that allows the template removal of soft un-aged silica nanoparticles was investigated. After oxidizing the organic template by Fenton chemistry, a good structural preservation is only achieved when the material is equilibrated and dried in a low-surface tension solvent. This avoids excessive capillary stress induced by the high surface tension of water, a major component in the Fenton reaction medium. The Fenton reaction should be carried out under mild conditions as well; otherwise the sample deteriorates by extensive hydrolysis, and capillary stress, and the structural ordering diminishes severely. We propose employing 10 ppm Fe concentration at 70 °C for 24 h for the cetyltrimethylammonium bromide template. The proposed protocol involves 2 steps resulting in an overall significantly higher pore volume attributed to the wider pores and limited particle agglomeration, while the calcined counterpart evidences aggregation and loss of the hexagonal ordering. n-BuOH exchange is unnecessary when the mesophase is stabilized by ageing, as the structure resists the water capillary stress. © The Royal Society of Chemistry 2013.