5 resultados para mercury in seafood
em Aston University Research Archive
Resumo:
In most of the discussions about environmental issues and policies, transportation is highlighted as one of the main sources of pollutant emissions and energy consumption. The attention given to the automotive industry is understandable in this context due to its size, expansion, presence in our daily lives, and of course its environmental impact. If we scrutinize the “greenness” of car manufacturers we will find issues of concern from the raw material use, production processes, use, and end-of-life of vehicles. The main issues for production are high consumption of energy, raw materials, water and the waste stream, which contains the four substances of concern (cadmium, lead, hexavalent chromium, mercury). In respect of carbon emissions and energy use the use of cars is the main phase of its life-cycle due to the combination of internal combustion engines with fossil fuels. The most recent pressure is aimed at the end-of-life vehicles (ELV). In addition to the pollution from vehicle use, traffic jams and car accidents continue to be part of the downside of a car culture. Landfills sites are becoming scarce and the contamination of soil and aquifers completes the picture.
Resumo:
Perturbations in the bismuth market resulted in Mining and Chemical Products Ltd., seeking further outlets in the market. Together with Manchem Ltd. they were anxious to evaluate the possibility of using bismuth compounds as a replacement for lead/calcium soaps in paint driers. A range of new organobismuth compounds were synthesised of the type RBiX2 and R3BiX2 (X= halogen, OOCR, dithiocarbamate). A variety of synthetic techniques were explored, including the use of mathematical reactions, phase-transfer catalysis and microwave energy. The preparation of a range of trivalent and pentavalent organobismuth carboxylates is reported and their infra-red , 13C, lH nmr spectra. The compounds were evaluated as paint driers and in cases found to enhance paint drying to a greater degree than the standard driers, to which they were being compared. The drying times of paint films containing the organobismuth compounds are reported, together with a comparison of the drying times with the addition of bismuth tris-diethyldithiocarbamate, which may promote the cross-linking reaction that occur in paint films during the drying process. Examples are reported to illustrate the great reductions in reaction times possible when using microwave energy. Reactions such as metallation of aromatic rings, ligand redistribution and synthesis were carried out in PTFE containers in a conventional domestic microwave oven. An X-ray diffraction study of (phenylazophenyl-C,N')mercury(II) chloride has shown it to be dimeric via long Hg-Cl bridging interactions of 3.367A. Its crystal structure is reported, together with its 13C nmr spectra and mass spectrum. The Lewis acidity of compounds of the type RBiX2 was investigated. The donor group being anchored to the organo group (R). The dithiocarbamates bis- (diethyldithiobarbamato)phenylbismuth(Ill) and [2-2-pyridyl)phenylbismuth(III) were synthesised, and their crystal structures, 14N, 13C nmr ar1d infra-red spectra are reported. Both compounds are pseudo-pentagonal bipyramidal in geometry, with two long Bi-S bonds and two short Bi-S bonds. The reaction of RBiBr2 (R= 2-(pyridyl) with various ligands is reported. The infra-red evidence suggesting that the coordination of extra ligands is accompanied by a reduction of the strength of the Bi-interaction.
Resumo:
An investigation was undertaken to study the effect of poor curing simulating hot climatic conditions and remedies on the durability of steel in concrete. Three different curing environments were used i.e. (1) Saturated Ca(OH)2 solution at 20°C, (2) Saturated Ca(OH)2 solution at 50°C and (3) Air at 50°C at 30% relative humidity. The third curing condition corresponding to the temperature and relative humidity typical of Middle Eastern Countries. The nature of the hardened cement paste matrix, cured under the above conditions was studied by means of Mercury Intrusion Porosimetry for measuring pore size distribution. The results were represented as total pore volume and initial pore entry diameter. The Scanning Electron Microscope was used to look at morphological changes during hydration, which were compared to the Mercury Intrusion Porosimetry results. X-ray defraction and Differential Thermal Analysis techniques were also employed for looking at any phase transformations. Polymer impregnation was used to reduce the porosity of the hardened cement pastes, especially in the case of the poorly cured samples. Carbonation rates of unimpregnated and impregnated cements were determined. Chloride diffusion studies were also undertaken to establish the effect of polymer impregnation and blending of the cements. Finally the corrosion behaviour of embedded steel bars was determined by the technique of Linear Polarisation. The steel was embedded in both untreated and polymer impregnated hardened cement pastes placed in either a solution containing NaCl or an environmental cabinet which provided carbonation at 40°C and 50% relative humidity.