13 resultados para medical image segmentation
em Aston University Research Archive
Resumo:
Segmentation is an important step in many medical imaging applications and a variety of image segmentation techniques exist. One group of segmentation algorithms is based on clustering concepts. In this article we investigate several fuzzy c-means based clustering algorithms and their application to medical image segmentation. In particular we evaluate the conventional hard c-means (HCM) and fuzzy c-means (FCM) approaches as well as three computationally more efficient derivatives of fuzzy c-means: fast FCM with random sampling, fast generalised FCM, and a new anisotropic mean shift based FCM. © 2010 by IJTS, ISDER.
Resumo:
We are concerned with the problem of image segmentation in which each pixel is assigned to one of a predefined finite number of classes. In Bayesian image analysis, this requires fusing together local predictions for the class labels with a prior model of segmentations. Markov Random Fields (MRFs) have been used to incorporate some of this prior knowledge, but this not entirely satisfactory as inference in MRFs is NP-hard. The multiscale quadtree model of Bouman and Shapiro (1994) is an attractive alternative, as this is a tree-structured belief network in which inference can be carried out in linear time (Pearl 1988). It is an hierarchical model where the bottom-level nodes are pixels, and higher levels correspond to downsampled versions of the image. The conditional-probability tables (CPTs) in the belief network encode the knowledge of how the levels interact. In this paper we discuss two methods of learning the CPTs given training data, using (a) maximum likelihood and the EM algorithm and (b) emphconditional maximum likelihood (CML). Segmentations obtained using networks trained by CML show a statistically-significant improvement in performance on synthetic images. We also demonstrate the methods on a real-world outdoor-scene segmentation task.
Resumo:
Image segmentation is one of the most computationally intensive operations in image processing and computer vision. This is because a large volume of data is involved and many different features have to be extracted from the image data. This thesis is concerned with the investigation of practical issues related to the implementation of several classes of image segmentation algorithms on parallel architectures. The Transputer is used as the basic building block of hardware architectures and Occam is used as the programming language. The segmentation methods chosen for implementation are convolution, for edge-based segmentation; the Split and Merge algorithm for segmenting non-textured regions; and the Granlund method for segmentation of textured images. Three different convolution methods have been implemented. The direct method of convolution, carried out in the spatial domain, uses the array architecture. The other two methods, based on convolution in the frequency domain, require the use of the two-dimensional Fourier transform. Parallel implementations of two different Fast Fourier Transform algorithms have been developed, incorporating original solutions. For the Row-Column method the array architecture has been adopted, and for the Vector-Radix method, the pyramid architecture. The texture segmentation algorithm, for which a system-level design is given, demonstrates a further application of the Vector-Radix Fourier transform. A novel concurrent version of the quad-tree based Split and Merge algorithm has been implemented on the pyramid architecture. The performance of the developed parallel implementations is analysed. Many of the obtained speed-up and efficiency measures show values close to their respective theoretical maxima. Where appropriate comparisons are drawn between different implementations. The thesis concludes with comments on general issues related to the use of the Transputer system as a development tool for image processing applications; and on the issues related to the engineering of concurrent image processing applications.
Resumo:
This Letter addresses image segmentation via a generative model approach. A Bayesian network (BNT) in the space of dyadic wavelet transform coefficients is introduced to model texture images. The model is similar to a Hidden Markov model (HMM), but with non-stationary transitive conditional probability distributions. It is composed of discrete hidden variables and observable Gaussian outputs for wavelet coefficients. In particular, the Gabor wavelet transform is considered. The introduced model is compared with the simplest joint Gaussian probabilistic model for Gabor wavelet coefficients for several textures from the Brodatz album [1]. The comparison is based on cross-validation and includes probabilistic model ensembles instead of single models. In addition, the robustness of the models to cope with additive Gaussian noise is investigated. We further study the feasibility of the introduced generative model for image segmentation in the novelty detection framework [2]. Two examples are considered: (i) sea surface pollution detection from intensity images and (ii) image segmentation of the still images with varying illumination across the scene.
Resumo:
It is well known that even slight changes in nonuniform illumination lead to a large image variability and are crucial for many visual tasks. This paper presents a new ICA related probabilistic model where the number of sources exceeds the number of sensors to perform an image segmentation and illumination removal, simultaneously. We model illumination and reflectance in log space by a generalized autoregressive process and Hidden Gaussian Markov random field, respectively. The model ability to deal with segmentation of illuminated images is compared with a Canny edge detector and homomorphic filtering. We apply the model to two problems: synthetic image segmentation and sea surface pollution detection from intensity images.
Resumo:
We have developed a new technique for extracting histological parameters from multi-spectral images of the ocular fundus. The new method uses a Monte Carlo simulation of the reflectance of the fundus to model how the spectral reflectance of the tissue varies with differing tissue histology. The model is parameterised by the concentrations of the five main absorbers found in the fundus: retinal haemoglobins, choroidal haemoglobins, choroidal melanin, RPE melanin and macular pigment. These parameters are shown to give rise to distinct variations in the tissue colouration. We use the results of the Monte Carlo simulations to construct an inverse model which maps tissue colouration onto the model parameters. This allows the concentration and distribution of the five main absorbers to be determined from suitable multi-spectral images. We propose the use of "image quotients" to allow this information to be extracted from uncalibrated image data. The filters used to acquire the images are selected to ensure a one-to-one mapping between model parameters and image quotients. To recover five model parameters uniquely, images must be acquired in six distinct spectral bands. Theoretical investigations suggest that retinal haemoglobins and macular pigment can be recovered with RMS errors of less than 10%. We present parametric maps showing the variation of these parameters across the posterior pole of the fundus. The results are in agreement with known tissue histology for normal healthy subjects. We also present an early result which suggests that, with further development, the technique could be used to successfully detect retinal haemorrhages.
Resumo:
Acquiring 3D shape from images is a classic problem in Computer Vision occupying researchers for at least 20 years. Only recently however have these ideas matured enough to provide highly accurate results. We present a complete algorithm to reconstruct 3D objects from images using the stereo correspondence cue. The technique can be described as a pipeline of four basic building blocks: camera calibration, image segmentation, photo-consistency estimation from images, and surface extraction from photo-consistency. In this Chapter we will put more emphasis on the latter two: namely how to extract geometric information from a set of photographs without explicit camera visibility, and how to combine different geometry estimates in an optimal way. © 2010 Springer-Verlag Berlin Heidelberg.
Resumo:
Textured regions in images can be defined as those regions containing a signal which has some measure of randomness. This thesis is concerned with the description of homogeneous texture in terms of a signal model and to develop a means of spatially separating regions of differing texture. A signal model is presented which is based on the assumption that a large class of textures can adequately be represented by their Fourier amplitude spectra only, with the phase spectra modelled by a random process. It is shown that, under mild restrictions, the above model leads to a stationary random process. Results indicate that this assumption is valid for those textures lacking significant local structure. A texture segmentation scheme is described which separates textured regions based on the assumption that each texture has a different distribution of signal energy within its amplitude spectrum. A set of bandpass quadrature filters are applied to the original signal and the envelope of the output of each filter taken. The filters are designed to have maximum mutual energy concentration in both the spatial and spatial frequency domains thus providing high spatial and class resolutions. The outputs of these filters are processed using a multi-resolution classifier which applies a clustering algorithm on the data at a low spatial resolution and then performs a boundary estimation operation in which processing is carried out over a range of spatial resolutions. Results demonstrate a high performance, in terms of the classification error, for a range of synthetic and natural textures
Resumo:
We describe a template model for perception of edge blur and identify a crucial early nonlinearity in this process. The main principle is to spatially filter the edge image to produce a 'signature', and then find which of a set of templates best fits that signature. Psychophysical blur-matching data strongly support the use of a second-derivative signature, coupled to Gaussian first-derivative templates. The spatial scale of the best-fitting template signals the edge blur. This model predicts blur-matching data accurately for a wide variety of Gaussian and non-Gaussian edges, but it suffers a bias when edges of opposite sign come close together in sine-wave gratings and other periodic images. This anomaly suggests a second general principle: the region of an image that 'belongs' to a given edge should have a consistent sign or direction of luminance gradient. Segmentation of the gradient profile into regions of common sign is achieved by implementing the second-derivative 'signature' operator as two first-derivative operators separated by a half-wave rectifier. This multiscale system of nonlinear filters predicts perceived blur accurately for periodic and aperiodic waveforms. We also outline its extension to 2-D images and infer the 2-D shape of the receptive fields.
Resumo:
There is a growing demand for data transmission over digital networks involving mobile terminals. An important class of data required for transmission over mobile terminals is image information such as street maps, floor plans and identikit images. This sort of transmission is of particular interest to the service industries such as the Police force, Fire brigade, medical services and other services. These services cannot be applied directly to mobile terminals because of the limited capacity of the mobile channels and the transmission errors caused by the multipath (Rayleigh) fading. In this research, transmission of line diagram images such as floor plans and street maps, over digital networks involving mobile terminals at transmission rates of 2400 bits/s and 4800 bits/s have been studied. A low bit-rate source encoding technique using geometric codes is found to be suitable to represent line diagram images. In geometric encoding, the amount of data required to represent or store the line diagram images is proportional to the image detail. Thus a simple line diagram image would require a small amount of data. To study the effect of transmission errors due to mobile channels on the transmitted images, error sources (error files), which represent mobile channels under different conditions, have been produced using channel modelling techniques. Satisfactory models of the mobile channel have been obtained when compared to the field test measurements. Subjective performance tests have been carried out to evaluate the quality and usefulness of the received line diagram images under various mobile channel conditions. The effect of mobile transmission errors on the quality of the received images has been determined. To improve the quality of the received images under various mobile channel conditions, forward error correcting codes (FEC) with interleaving and automatic repeat request (ARQ) schemes have been proposed. The performance of the error control codes have been evaluated under various mobile channel conditions. It has been shown that a FEC code with interleaving can be used effectively to improve the quality of the received images under normal and severe mobile channel conditions. Under normal channel conditions, similar results have been obtained when using ARQ schemes. However, under severe mobile channel conditions, the FEC code with interleaving shows better performance.
Resumo:
Presentation Purpose:To relate structural change to functional change in age-related macular degeneration (AMD) in a cross-sectional population using fundus imaging and the visual field status. Methods:10 degree standard and SWAP visual fields and other standard functional clinical measures were acquired in 44 eyes of 27 patients at various stages of AMD, as well as fundus photographs. Retro-mode SLO images were captured in a subset of 29 eyes of 19 of the patients. Drusen area, measured by automated drusen segmentation software (Smith et al. 2005) was correlated with visual field data. Visual field defect position was compared to the position of the imaged drusen and deposits using custom software. Results:The effect of AMD stage on drusen area within the 6000µm was significant (One-way ANOVA: F = 17.231, p < 0.001), however the trend was not strong across all stages. There were significant linear relationships between visual field parameters and drusen area. The mean deviation (MD) declined by 3.00dB and 3.92dB for each log % drusen area for standard perimetry and SWAP, respectively. The visual field parameters of focal loss displayed the strongest correlations with drusen area. The number of pattern deviation (PD) defects increased by 9.30 and 9.68 defects per log % drusen area for standard perimetry and SWAP, respectively. Weaker correlations were found between drusen area and visual acuity, contrast sensitivity, colour vision and reading speed. 72.6% of standard PD defects and 65.2% of SWAP PD defects coincided with retinal signs of AMD on fundus photography. 67.5% of standard PD defects and 69.7% of SWAP PD defects coincided with deposits on retro-mode images. Conclusions:Perimetry exhibited a stronger relationship with drusen area than other measures of visual function. The structure-function relationship between visual field parameters and drusen area was linear. Overall the indices of focal loss had a stronger correlation with drusen area in SWAP than in standard perimetry. Visual field defects had a high coincidence proportion with retinal manifestations of AMD.Smith R.T. et al. (2005) Arch Ophthalmol 123:200-206.
Resumo:
Continuing advances in digital image capture and storage are resulting in a proliferation of imagery and associated problems of information overload in image domains. In this work we present a framework that supports image management using an interactive approach that captures and reuses task-based contextual information. Our framework models the relationship between images and domain tasks they support by monitoring the interactive manipulation and annotation of task-relevant imagery. During image analysis, interactions are captured and a task context is dynamically constructed so that human expertise, proficiency and knowledge can be leveraged to support other users in carrying out similar domain tasks using case-based reasoning techniques. In this article we present our framework for capturing task context and describe how we have implemented the framework as two image retrieval applications in the geo-spatial and medical domains. We present an evaluation that tests the efficiency of our algorithms for retrieving image context information and the effectiveness of the framework for carrying out goal-directed image tasks. © 2010 Springer Science+Business Media, LLC.
Resumo:
In order to address problems of information overload in digital imagery task domains we have developed an interactive approach to the capture and reuse of image context information. Our framework models different aspects of the relationship between images and domain tasks they support by monitoring the interactive manipulation and annotation of task-relevant imagery. The approach allows us to gauge a measure of a user's intentions as they complete goal-directed image tasks. As users analyze retrieved imagery their interactions are captured and an expert task context is dynamically constructed. This human expertise, proficiency, and knowledge can then be leveraged to support other users in carrying out similar domain tasks. We have applied our techniques to two multimedia retrieval applications for two different image domains, namely the geo-spatial and medical imagery domains. © Springer-Verlag Berlin Heidelberg 2007.