11 resultados para mechanical engineering
em Aston University Research Archive
Resumo:
Investigation of the different approaches used by Expert Systems researchers to solve problems in the domain of Mechanical Design and Expert Systems was carried out. The techniques used for conventional formal logic programming were compared with those used when applying Expert Systems concepts. A literature survey of design processes was also conducted with a view to adopting a suitable model of the design process. A model, comprising a variation on two established ones, was developed and applied to a problem within what are described as class 3 design tasks. The research explored the application of these concepts to Mechanical Engineering Design problems and their implementation on a microcomputer using an Expert System building tool. It was necessary to explore the use of Expert Systems in this manner so as to bridge the gap between their use as a control structure and for detailed analytical design. The former application is well researched into and this thesis discusses the latter. Some Expert System building tools available to the author at the beginning of his work were evaluated specifically for their suitability for Mechanical Engineering design problems. Microsynics was found to be the most suitable on which to implement a design problem because of its simple but powerful Semantic Net Knowledge Representation structure and the ability to use other types of representation schemes. Two major implementations were carried out. The first involved a design program for a Helical compression spring and the second a gearpair system design. Two concepts were proposed in the thesis for the modelling and implementation of design systems involving many equations. The method proposed enables equation manipulation and analysis using a combination of frames, semantic nets and production rules. The use of semantic nets for purposes other than for psychology and natural language interpretation, is quite new and represents one of the major contributions to knowledge by the author. The development of a purpose built shell program for this type of design problems was recommended as an extension of the research. Microsynics may usefully be used as a platform for this development.
Resumo:
This investigation is grounded within the concept of embodied cognition where the mind is considered to be part of a biological system. A first year undergraduate Mechanical Engineering cohort of students was tasked with explaining the behaviour of three balls of different masses being rolled down a ramp. The explanations given by the students highlighted the cognitive conflict between the everyday interpretation of the word energy and its mathematical use. The results showed that even after many years of schooling, students found it challenging to interpret the mathematics they had learned and relied upon pseudo-scientific notions to account for the behaviour of the balls.
Resumo:
With the demand for engineering graduates at what may be defined as an unprecedented high, many universities find themselves facing significant levels of student attrition-with high "drop-out levels" being a major issue in engineering education. In order to address this, Aston University in the UK has radically changed its undergraduate engineering education curriculum, introducing capstone CDIO (Conceive, Design, Implement, Operate) modules for all first year students studying Mechanical Engineering and Design. The introduction of CDIO is aimed at making project / problem based learning the norm. Utilising this approach, the learning and teaching in engineering purposefully aims to promote innovative thinking, thus equipping students with high-level problem-solving skills in a way that builds on theory whilst enhancing practical competencies and abilities. This chapter provides an overview of an Action Research study undertaken contemporaneously with the development, introduction, and administration of the first two semesters of CDIO. It identifies the challenges and benefits of the approach and concludes by arguing that whilst CDIO is hard work for staff, it can make a real difference to students' learning experiences, thereby positively impacting retention. © 2012, IGI Global.
Resumo:
Aston University offers a Foundation year in Engineering and Applied Science. The purpose of this programme is to prepare people with the necessary skills and knowledge required to enrol on an undergraduate programme in Engineering and Applied Science. It is acknowledged there are many misconceptions as to what engineering is. This is further compounded by the lack of knowledge of the different engineering disciplines both by pre-university students and careers teachers [1]. In order to ameliorate this lack of knowledge, Aston University offers a unique programme where students are given the opportunity to have a ?taste? of four Engineering Disciplines: Mechanical Engineering, Electrical Engineering, Chemical Engineering and Computer Science. Alongside these ?taster? sessions, the students study a Professional Skills module where they are expected to keep a portfolio of skills. In their portfolios they comment on their strengths and weakness in relation to six skill areas: independent enquirer, self-manager, effective participator, creative thinker, reflective learner and team worker. The portfolio gives them the opportunity to perform a self-skills audit and identify areas where they have strengths and areas which require work to improve to become a competent professional engineer. They also have talks from engineers who discuss with them their careers and the different aspects of engineering. The purpose of the ?taster? sessions, portfolio and the talks are to encourage the students to critically examine their career aspirations and choose an engineering undergraduate programme which best suits their ambitions and potential skills. The feedback from students has been very positive. The ?taster? sessions have enabled them to make an informed choice as to the undergraduate programme they would like to study. The programme has given them the technical skills and knowledge to enrol on an undergraduate programme and also the skills and knowledge to be a successful learner.
Resumo:
This paper draws upon the findings of a three year study which tracks an institutions journey of CDIO. In focusing on the student perspective the findings discuss students’ prior learning experiences and their expectations of university. The study considers students’ early perceptions of CDIO; emergent findings suggest that whilst CDIO is not really what students expect when they first arrive at university, most prefer it to ‘traditional lectures’. Indeed the majority indicate that they believe the approach enhances their employability and provides a more engaging learning experience. The conclusion argues that with its focus on problem-based learning and team-working, CDIO has changed the face of the 1st year experience for mechanical engineering and designed students within the university and that in doing so it has enhanced transition and ultimately promoted student success.
Resumo:
This dissertation studies the process of operations systems design within the context of the manufacturing organization. Using the DRAMA (Design Routine for Adopting Modular Assembly) model as developed by a team from the IDOM Research Unit at Aston University as a starting point, the research employed empirically based fieldwork and a survey to investigate the process of production systems design and implementation within four UK manufacturing industries: electronics assembly, electrical engineering, mechanical engineering and carpet manufacturing. The intention was to validate the basic DRAMA model as a framework for research enquiry within the electronics industry, where the initial IDOM work was conducted, and then to test its generic applicability, further developing the model where appropriate, within the other industries selected. The thesis contains a review of production systems design theory and practice prior to presenting thirteen industrial case studies of production systems design from the four industry sectors. The results and analysis of the postal survey into production systems design are then presented. The strategic decisions of manufacturing and their relationship to production systems design, and the detailed process of production systems design and operation are then discussed. These analyses are used to develop the generic model of production systems design entitled DRAMA II (Decision Rules for Analysing Manufacturing Activities). The model contains three main constituent parts: the basic DRAMA model, the extended DRAMA II model showing the imperatives and relationships within the design process, and a benchmark generic approach for the design and analysis of each component in the design process. DRAMA II is primarily intended for use by researchers as an analytical framework of enquiry, but is also seen as having application for manufacturing practitioners.
Resumo:
This thesis describes an investigation which was carried out under the Interdisciplinary Higher Degres (IHD) Scheme of The University of Aston in Birmingham. The investigation, which involved joint collaboration between the IHD scheme, the Department of Mechanical Engineering, and G.E.C. Turbine Generators Limited, was concerned with hydrostatic bearing characteristics and of how hydrostatic bearings could be used to enable turbine generator rotor support impedances to be controlled to give an improved rotor dynamic response. Turbine generator rotor critical speeds are determined not only by the mass and flexibility of the rotor itself, which are relatively easily predicted, but also by the dynamic characteristics of the bearing oil film, pedestal, and foundations. It is because of the difficulty in accurately predicting the rotor support characteristics that the designer has a problem in ensuring that a rotor's normal running speed is not close to one of its critical speeds. The consequence of this situation is that some rotors do have critical speeds close to their normal running speed and the resulting high levels of vibration cause noise, high rotor stresses, and a shortening of bearing life. A combined theoretical and experimental investigation of the effects of mounting the normal rotor journal bearing in a hydrostatic bearing was carried out. The purpose of the work was to show that by changing the oil flow resistance offered by capillaries connecting accumulators to the hydrostatic bearing, the overall rotor support characteristics could be tuned to enable rotor critical speeds to be moved at will. Testing of a combined journal and hydrostatic bearing has confirmed the theory of its operation and a theoretical study of a full size machine showed that its critical speed could be moved by over 350 rpm and that its rotor vibration at running speed could be reduced by 80%.
Resumo:
In recent years the increased interest in introducing radio frequency technology (RFID) in warehousing was observed. First adopters of RFID reported numerous benefits, which included: reduced shrinkage, real-time tracking and better accuracy of data collection. Along with the academic and industrial discussion on benefits which can be achieved in RFID enabled warehouses there are reports on issues related to adoption of RFID technology in warehousing. This paper reviews results of scientific reports of RFID implementation in warehouses and discusses the adoption barriers and causes of not achieving full potential of the technology. Following adoption barriers are identified and set in warehousing context: lack of forseeable return on investment (ROI), unreliable performance of RFID systems, standarisation, integration with legacy systems and privacy/security concerns. As more studies will address these challenges, the realisation of RFID benefits for warehouses will become reality.
Resumo:
As a global profession, engineering is integral to the maintenance and further development of society. Indeed, contemporary social problems requiring engineering solutions are not only a consequence of natural and ‘manmade’ disasters (such as the Japanese earthquake or the oil leakage in the Gulf of Mexico) but also encapsulate 21st Century dilemmas around sustainability, poverty and pollution [2,6,7]. Given the complexity of such problems and the constant need for innovation, the demand for engineering education to provide a ready supply of suitably qualified engineering graduates, able to make innovative decisions has never been higher [3,5]. Bearing this in mind, and taking account problems of attrition in engineering education [1,6,4] innovation in the way in which the curriculum is developed and delivered is crucial. CDIO [Conceive, Design, Implement, Operate] provides a potentially ground-breaking solution to such dilemmas. Aimed at equipping students with practical engineering skills supported by the necessary theoretical background, CDIO could potentially change the way engineering is perceived and experienced within higher education. Aston University introduced CDIO into its Mechanical Engineering and Design programmes in October 2011. From its induction, engineering education researchers have ‘shadowed’ the staff responsible for developing and teaching the programme. Utilising an Action Research Design, and adopting a mixed methodological research design, the researchers have worked closely with the teaching team to critically reflect on the processes involved in introducing CDIO into the curriculum. Concurrently, research has been conducted to capture students’ perspectives of CDIO. In evaluating the introduction of CDIO at Aston, the researchers have developed a distinctive research strategy with which to evaluate CDIO. It is the emergent findings from this research that form the basis of this paper. Although early-on in its development CDIO is making a significant difference to engineering education at the University. The paper draws attention to pedagogical, practical and professional issues – discussing each one in turn and in doing so critically analysing the value of CDIO from academic, student and industrial perspectives. The paper concludes by noting that whilst CDIO represents a forwardthinking approach to engineering education, the need for constant innovation in learning and teaching should not be forgotten. Indeed, engineering education needs to put itself at the forefront of pedagogic practice. Providing all-rounded engineers, ready to take on the challenges of the 21st Century!
Resumo:
This article describes a surgical robotic device that is able to discriminate tissue interfaces and other controlling parameters ahead of the drill tip. The advantage in such a surgery is that the tissues at the interfaces can be preserved. A smart tool detects ahead of the tool point and is able to control the interaction with respect to the flexing tissue, to avoid penetration or to control the extent of protrusion with respect to the position of the tissue. For surgical procedures, where precision is required, the tool offers significant benefit. To interpret the drilling conditions and the conditions leading up to breakthrough at a tissue interface, a sensing scheme is used that discriminates between the variety of conditions posed in the drilling environment. The result is a fully autonomous system, which is able to respond to the tissue type, behaviour, and deflection in real-time. The system is also robust in terms of disturbances encountered in the operating theatre. The device is pragmatic. It is intuitive to use, efficient to set up, and uses standard drill bits. The micro-drill, which has been used to prepare cochleostomies in the theatre, was used to remove the bone tissue leaving the endosteal membrane intact. This has enabled the preservation of sterility and the drilling debris to be removed prior to the insertion of the electrode. It is expected that this technique will promote the preservation of hearing and reduce the possibility of complications. The article describes the device (including simulated drill progress and hardware set-up) and the stages leading up to its use in the theatre. © 2010 Authors.