3 resultados para maximum osmotic potential at saturation point

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growth of biomass and sporulation of pathogenic and non-pathogenic Saprolegnia species was markedly decreased at reduced water potentials. Oogonium and zoosporangium formation were more sensitive to reduced osmotic and matrix potentials than growth in biomass. Although little difference was observed between the effects of matrix and osmotic potentials, the Saprolegnia species investigated responded differently to those solutes utilized in control of osmotic potential. Biomas, oogonium and zoosporangium formation were greater in the presence of reduced osmotic potentials mediated by mannitol than equivalent potentials mediated by potassium chloride. Endogenous potassium levels varied little with reduced matrix or osmotic potentials. Conversly, mannitol content of colonies exposed to reduced osmotic potentials mediated by mannitol initailly increased while endogenous amino acid levels were observed to rise in response to moderately reduced water potentials. Sensitivity of Saprolegnia species to reduced potantials and effects on substrate colonization are discussed in the light of these observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various micro-radial compressor configurations were investigated using one-dimensional meanline and computational fluid dynamics (CFD) techniques for use in a micro gas turbine (MGT) domestic combined heat and power (DCHP) application. Blade backsweep, shaft speed, and blade height were varied at a constant pressure ratio. Shaft speeds were limited to 220 000 r/min, to enable the use of a turbocharger bearing platform. Off-design compressor performance was established and used to determine the MGT performance envelope; this in turn was used to assess potential cost and environmental savings in a heat-led DCHP operating scenario within the target market of a detached family home. A low target-stage pressure ratio provided an opportunity to reduce diffusion within the impeller. Critically for DCHP, this produced very regular flow, which improved impeller performance for a wider operating envelope. The best performing impeller was a low-speed, 170 000 r/min, low-backsweep, 15° configuration producing 71.76 per cent stage efficiency at a pressure ratio of 2.20. This produced an MGT design point system efficiency of 14.85 per cent at 993 W, matching prime movers in the latest commercial DCHP units. Cost and CO2 savings were 10.7 per cent and 6.3 per cent, respectively, for annual power demands of 17.4 MWht and 6.1 MWhe compared to a standard condensing boiler (with grid) installation. The maximum cost saving (on design point) was 14.2 per cent for annual power demands of 22.62 MWht and 6.1 MWhe corresponding to an 8.1 per cent CO2 saving. When sizing, maximum savings were found with larger heat demands. When sized, maximum savings could be made by encouraging more electricity export either by reducing household electricity consumption or by increasing machine efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(methyl methacrylate) (PMMA) based polymer optical fiber Bragg gratings have been used for measuring water activity of aviation fuel. Jet A-1 samples with water content ranging from 100% ERH (wet fuel) to 10 ppm (dried fuel), have been conditioned and calibrated for measurement. The PMMA based optical fiber grating exhibits consistent response and a good sensitivity of 59±3pm/ppm (water content in mass). This water activity measurement allows PMMA based optical fiber gratings to detect very tiny amounts of water in fuels that have a low water saturation point, potentially giving early warning of unsafe operation of a fuel system. © 2014 SPIE.