15 resultados para magnetic shape memory alloys

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microcompression specimens, 10–15 µm in diameter by 20–30 µm in height, were produced from individual parent grains in a polycrystalline U–13 at.%Nb shape-memory alloy using the focused ion beam technique. The specimens were tested in a nanoindentation instrument with a flat diamond tip to investigate stress–strain behavior as a function of crystallographic orientation. The results are in qualitative agreement with a single-crystal accommodation strain (Bain strain) model of the shape-memory effect for this alloy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose and demonstrate a technique for monitoring the recovery deformation of the shape-memory polymers (SMP) using a surface-attached fiber Bragg grating (FBG) as a vector-bending sensor. The proposed sensing scheme could monitor the pure bending deformation for the SMP sample. When the SMP sample undergoes concave or convex bending, the resonance wavelength of the FBG will have red-shift or blue-shift according to the tensile or compressive stress gradient along the FBG. As the results show, the bending sensitivity is around 4.07  nm/cm−1. The experimental results clearly indicate that the deformation of such an SMP sample can be effectively monitored by the attached FBG not just for the bending curvature but also the bending direction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article demonstrates the use of embedded fibre Bragg gratings as vector bending sensor to monitor two-dimensional shape deformation of a shape memory polymer plate. The shape memory polymer plate was made by using thermal-responsive epoxy-based shape memory polymer materials, and the two fibre Bragg grating sensors were orthogonally embedded, one on the top and the other on the bottom layer of the plate, in order to measure the strain distribution in both longitudinal and transverse directions separately and also with temperature reference. When the shape memory polymer plate was bent at different angles, the Bragg wavelengths of the embedded fibre Bragg gratings showed a red-shift of 50 pm/°caused by the bent-induced tensile strain on the plate surface. The finite element method was used to analyse the stress distribution for the whole shape recovery process. The strain transfer rate between the shape memory polymer and optical fibre was also calculated from the finite element method and determined by experimental results, which was around 0.25. During the experiment, the embedded fibre Bragg gratings showed very high temperature sensitivity due to the high thermal expansion coefficient of the shape memory polymer, which was around 108.24 pm/°C below the glass transition temperature (Tg) and 47.29 pm/°C above Tg. Therefore, the orthogonal arrangement of the two fibre Bragg grating sensors could provide a temperature compensation function, as one of the fibre Bragg gratings only measures the temperature while the other is subjected to the directional deformation. © The Author(s) 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Verbal working memory and emotional self-regulation are impaired in Bipolar Disorder (BD). Our aim was to investigate the effect of Lamotrigine (LTG), which is effective in the clinical management of BD, on the neural circuits subserving working memory and emotional processing. Functional Magnetic Resonance Imaging data from 12 stable BD patients was used to detect LTG-induced changes as the differences in brain activity between drug-free and post-LTG monotherapy conditions during a verbal working memory (N-back sequential letter task) and an angry facial affect recognition task. For both tasks, LGT monotherapy compared to baseline was associated with increased activation mostly within the prefrontal cortex and cingulate gyrus, in regions normally engaged in verbal working memory and emotional processing. Therefore, LTG monotherapy in BD patients may enhance cortical function within neural circuits involved in memory and emotional self-regulation. © 2007 Elsevier B.V. and ECNP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes an experimental and analytic study of the effects of magnetic non-linearity and finite length on the loss and field distribution in solid iron due to a travelling mmf wave. In the first half of the thesis, a two-dimensional solution is developed which accounts for the effects of both magnetic non-linearity and eddy-current reaction; this solution is extended, in the second half, to a three-dimensional model. In the two-dimensional solution, new equations for loss and flux/pole are given; these equations contain the primary excitation, the machine parameters and factors describing the shape of the normal B-H curve. The solution applies to machines of any air-gap length. The conditions for maximum loss are defined, and generalised torque/frequency curves are obtained. A relationship between the peripheral component of magnetic field on the surface of the iron and the primary excitation is given. The effects of magnetic non-linearity and finite length are combined analytically by introducing an equivalent constant permeability into a linear three-dimensional analysis. The equivalent constant permeability is defined from the non-linear solution for the two-dimensional magnetic field at the axial centre of the machine to avoid iterative solutions. In the linear three-dimensional analysis, the primary excitation in the passive end-regions of the machine is set equal to zero and the secondary end faces are developed onto the air-gap surface. The analyses, and the assumptions on which they are based, were verified on an experimental machine which consists of a three-phase rotor and alternative solid iron stators, one with copper end rings, and one without copper end rings j the main dimensions of the two stators are identical. Measurements of torque, flux /pole, surface current density and radial power flow were obtained for both stators over a range of frequencies and excitations. Comparison of the measurements on the two stators enabled the individual effects of finite length and saturation to be identified, and the definition of constant equivalent permeability to be verified. The penetration of the peripheral flux into the stator with copper end rings was measured and compared with theoretical penetration curves. Agreement between measured and theoretical results was generally good.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE. A methodology for noninvasively characterizing the three-dimensional (3-D) shape of the complete human eye is not currently available for research into ocular diseases that have a structural substrate, such as myopia. A novel application of a magnetic resonance imaging (MRI) acquisition and analysis technique is presented that, for the first time, allows the 3-D shape of the eye to be investigated fully. METHODS. The technique involves the acquisition of a T2-weighted MRI, which is optimized to reveal the fluid-filled chambers of the eye. Automatic segmentation and meshing algorithms generate a 3-D surface model, which can be shaded with morphologic parameters such as distance from the posterior corneal pole and deviation from sphericity. Full details of the method are illustrated with data from 14 eyes of seven individuals. The spatial accuracy of the calculated models is demonstrated by comparing the MRI-derived axial lengths with values measured in the same eyes using interferometry. RESULTS. The color-coded eye models showed substantial variation in the absolute size of the 14 eyes. Variations in the sphericity of the eyes were also evident, with some appearing approximately spherical whereas others were clearly oblate and one was slightly prolate. Nasal-temporal asymmetries were noted in some subjects. CONCLUSIONS. The MRI acquisition and analysis technique allows a novel way of examining 3-D ocular shape. The ability to stratify and analyze eye shape, ocular volume, and sphericity will further extend the understanding of which specific biometric parameters predispose emmetropic children subsequently to develop myopia. Copyright © Association for Research in Vision and Ophthalmology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Nuclear Magnetic Resonance (NMR) spectra of liquids contain a wealth of quantitative information that may be derived, for instance, from chemical shifts and spin-spin couplings. The available information depends on the incoherent rapid molecular motion that causes complicating effects present in the solid state to average to zero. Whereas liquid state NMR spectra show narrow lines, the corresponding NMR spectra from the solid state are normally composed of exceedingly broad resonance lines due to highly restricted molecular motion. It is, therefore, difficult to obtain directly as detailed information from the spectra of solids as from those derived from the liquid state. Studies on a new technique (SINNMR, the sonically induced narrowing of the NMR spectra of solids) to remove line broadening effects in the NMR spectra of the solid state are reported within this thesis. SINNMR involves narrowing the NMR absorptions from solid particles by irradiating them with ultrasound when they are suspended in a support liquid. It is proposed that ultrasound induces incoherent motion of the suspended particles, producing motional characteristics of the particles similar to those of rather large molecules. The first report of apparently successful experiments involving SINNMR[1] emphasised both the irreproducibility of the technique and the uncertainty regarding its true origin. If SINNMR can be made reproducible and the effect definitively attributed to the sonically induced incoherent motional averaging of particles, the technique could offer a simple alternative to the now classical magic-angle spinning (MAS) NMR[2] and the recently reported dynamic angle spinning (DAS)[3] and double rotation (DOR)[4] techniques. Evidence is presented in this thesis to support the proposal that ultrasound may be used to narrow the NMR spectral resonances from solids by inducing incoherent motion of particles suspended in support liquids and, additionally, for some solids, by inducing rotational motion of molecular constituents in the lattices of solids. Successful SINNMR line narrowing using 20 kHz ultrasound is reported for a variety of samples: including trisodium orthophosphate, polytetrafluoroethylene and aluminium alloys. Investigations of SINNMR line narrowing in trisodium phosphate have revealed the relationship between ultrasonic power, particle size and support liquid density for the production of optimum SINNMR conditions. It is also proposed that the incoherent motion of particles induced by 20 kHz ultrasound can originate from interactions between acoustically induced cavitation microjets and particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aluminium - lithium alloys are specialist alloys used exclusively by the aerospace industry. They have properties that are favourable to the production of modern military aircraft. The addition of approximately 2.5 percent lithium to aluminium increases the strength characteristics of the new alloys by 10 percent. The same addition has the added advantage of decreasing the density of the resulting alloy by a similar percentage. The disadvantages associated with this alloy are primarily price and castability. The addition of 2.5 weight percent lithium to aluminium results in a price increase of 100% explaining the aerospace exclusivity. The processability of the alloys is restricted to ingot casting and wrought treatment but for complex components precision casting is required. Casting the alloys into sand and investment moulds creates a metal - mould reaction, the consequences of which are intolerable in the production of military hardware. The primary object of this project was to investigate and characterise the reactions occurring between the newly poured metal and surface of the mould and to propose a method of counteracting the metal - mould reaction. The constituents of standard sand and investment moulds were pyrolised with lithium metal in order to simplify the complex in-mould reaction and the products were studied by the solid state techniques of powder X-Ray diffraction and magic angle spinning nuclear magnetic resonance spectroscopy. The results of this study showed that the order of reaction was: Organic reagents> > Silicate reagents> Non silicate reagents Alphaset and Betaset were the two organic binders used to prepare the sand moulds throughout this project. Studies were carried out to characterise these resins in order to determine the factors involved in their reaction with lithium. Analysis revealed that during the curing process the phenolic hydroxide groups are not reacted out and that a redox reaction takes place between these hydroxides and the lithium in the molten alloys. Casting experiments carried out to assess the protection afforded by various hydroxide protecting agents showed that modern effective, protecting chemicals such as bis-trimethyl silyl acetamide and hexamethyldisilazane did not inhibit the metal - mould reaction to a sufficiently high standard and that tri-methylchlorosilane was consistently the best performer. Tri-methyl chlorosilane has a simple functionalizing mechanism compared to other hydroxide protecting reagents and this factor is responsible for its superior inhibiting qualities. Comparative studies of 6Li and 7Li N.M.R. spectra (M.A.S. and `off angle') establish that, for solid state (and even solution) analytical purposes 6Li is the preferred nucleus. 6Li M.A.S.N.M.R. spectra were obtained for thermally treated laponite clay. At temperatures below 800oC both dehydrated and rehydrated samples were considered. The data are consistent with mobility of lithium ions from the trioctahedral clay sites at 600oC. The superior resolution achievable in 6Li M.A.S.N.M.R. is demonstrated in the analysis of a microwave prepared lithium exchanged clay where 6Li spectroscopy revelaed two lithium sites in comparison to 7Li M.A.S.N.M.R. which gave only a single lithium resonance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last few years, there has been considerable interest in using saturated magnetic objective lenses in high resolution electron microscopes. Such lenses, in present commercial electron microscopes, are energized either by conventional or superconducting coils. Very little work, however, has been reported on the use of conventional coils in saturated magnetic electron lenses. The present investigation has been concerned with the design of high flux density saturated objective lenses of both single and double polepiece types which may be energized by conventional coils and in some cases by superconducting coils. Such coils have the advantage of being small and capable of carrying high current densities. The present work has been carried out with the aid of several computer programs based on the finite element method. The effect of the shape and position of the energizing coil on the electron optical parameter has been investigated. Electron optical properties such as chromatic and spherical aberration have been studies in detail for saturated single and double polepiece lenses. Several high flux density coils of different shapes have been investigated. The choice of the most favourable coil shape and position subject to the operational requirements, has been studied in some detail. The focal properties of such optimised lenses have been computed and compared.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis is concerned with the electron properties of single-polepiece magnetic electron lenses especially under conditions of extreme polepiece saturation. The electron optical properties are first analysed under conditions of high polepiece permeability. From this analysis, a general idea can be obtained of the important parameters that affect ultimate lens performance. In addition, useful information is obtained concerning the design of improved lenses operating under conditions of extreme polepiece saturation, for example at flux densities of the order of 10 Tesla. It is shown that in a single-polepiece lens , the position and shape of the lens exciting coil plays an important role. In particular, the maximum permissible current density in the windings,rather than the properties of the iron, can set a limit to lens performance. This factor was therefore investigated in some detail. The axial field distribution of a single-polepiece lens, unlike that of a conventional lens, is highly asymmetrical. There are therefore two possible physical arrangements of the lens with respect to the incoming electron beam. In general these two orientations will result in different aberration coefficients. This feature has also been investigated in some detail. Single-pole piece lenses are thus considerably more complicated electron- optically than conventional double polepiece lenses. In particular, the absence of the usual second polepiece causes most of the axial magnetic flux density distribution to lie outside the body of the lens. This can have many advantages in electron microscopy but it creates problems in calculating the magnetic field distribution. In particular, presently available computer programs are liable to be considerably in error when applied to such structures. It was therefore necessary to find independent ways of checking the field calculations. Furthermore, if the polepiece is allowed to saturate, much more calculation is involved since the field distribution becomes a non-linear function of the lens excitation. In searching for optimum lens designs, care was therefore taken to ensure that the coil was placed in the optimum position. If this condition is satisfied there seems to be no theoretical limit to the maximum flux density that can be attained at the polepiece tip. However , under iron saturation condition, some broadening of the axial field distribution will take place, thereby changing the lens aberrations . Extensive calculations were therefore made to find the minimum spherical and chromatic aberration coefficients . The focal properties of such lens designs are presented and compared with the best conventional double-polepiece lenses presently available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study characterizes the visually evoked magnetic response (VEMR) to pattern onset/offset stimuli, using a single channel BTi magnetometer. The influence of stimulus parameters and recording protocols on the VEMR is studied with inferences drawn about the nature of cortical processing, its origins and optimal recording strategies. Fundamental characteristics are examined, such as the behaviour of successive averaged and unaveraged responses; the effects of environmental shielding; averaging; inter- and intrasubject variability and equipment specificity. The effects of varying check size, field size, contrast and refractive error on latency, amplitude and topographic distribution are also presented. Latency and amplitude trends are consistent with previous VEP findings and known anatomical properties of the visual system. Topographic results are consistent with the activity of sources organised according to the cruciform model of striate cortex. A striate origin for the VEMR is also suggested by the results to quarter, octant and annulus field stimuli. Similarities in the behaviour and origins of the sources contributing to the CIIm and CIIIm onset peaks are presented for a number of stimulus conditions. This would be consistent with differing processing event in the same, or similar neuronal populations. Focal field stimuli produce less predictable responses than full or half fields, attributable to a reduced signal to noise ratio and an increased sensitivity to variations in cortical morphology. Problems with waveform peak identification are encountered for full field stimuli that can only be resolved by the careful choice of stimulus parameters, comparisons with half field responses or with reference to the topographic distribution of each waveform peak. An anatomical study of occipital lobe morphology revealed large inter- and intrasubject variation in calcarine fissure shape and striate cortex distribution. An appreciation of such variability is important for VEMR interpretation, due to the technique's sensitivity to source depth and orientation, and it is used to explain the experimental results obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel device for the detection and characterisation of static magnetic fields is presented. It consists of a femtosecond laser inscribed fibre Bragg grating (FBG) that is incorporated into an optical fibre with a femtosecond laser micromachined slot. The symmetry of the fibre is broken by the micro-slot, producing non-uniform strain across the fibre cross section. The sensing region is coated with Terfenol-D making the device sensitive to static magnetic fields, whereas the symmetry breaking results in a vectorial sensor for the detection of magnetic fields as low as 0.046 mT with a resolution of ±0.3mT in transmission and ±0.7mT in reflection. The sensor output is directly wavelength encoded from the FBG filtering, leading to simple demodulation through the monitoring of wavelength shifts that result as the fibre structure changes shape in response to the external magnetic field. The use of a femtosecond laser to both inscribe the FBG and micro-machine the slot in a single stage, prior to coating the device, significantly simplifies the sensor fabrication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuroimaging studies have consistently shown that working memory (WM) tasks engage a distributed neural network that primarily includes the dorsolateral prefrontal cortex, the parietal cortex, and the anterior cingulate cortex. The current challenge is to provide a mechanistic account of the changes observed in regional activity. To achieve this, we characterized neuroplastic responses in effective connectivity between these regions at increasing WM loads using dynamic causal modeling of functional magnetic resonance imaging data obtained from healthy individuals during a verbal n-back task. Our data demonstrate that increasing memory load was associated with (a) right-hemisphere dominance, (b) increasing forward (i.e., posterior to anterior) effective connectivity within the WM network, and (c) reduction in individual variability in WM network architecture resulting in the right-hemisphere forward model reaching an exceedance probability of 99% in the most demanding condition. Our results provide direct empirical support that task difficulty, in our case WM load, is a significant moderator of short-term plasticity, complementing existing theories of task-related reduction in variability in neural networks. Hum Brain Mapp, 2013. © 2013 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives. Emotional dysregulation in bipolar disorder is thought to arise from dysfunction within prefrontal cortical regions involved in cognitive control coupled with increased or aberrant activation within regions engaged in emotional processing. The aim of this study was to determine the common and distinct patterns of functional brain abnormalities during reward and working memory processing in patients with bipolar disorder. Methods. Participants were 36 euthymic bipolar disorder patients and 37 healthy comparison subjects matched for age, sex and IQ. Functional magnetic resonance imaging (fMRI) was conducted during the Iowa Gambling Task (IGT) and the n-back working memory task. Results. During both tasks, patients with bipolar disorder demonstrated a pattern of inefficient engagement within the ventral frontopolar prefrontal cortex with evidence of segregation along the medial-lateral dimension for reward and working memory processing, respectively. Moreover, patients also showed greater activation in the anterior cingulate cortex during the Iowa Gambling Task and in the insula during the n-back task. Conclusions. Our data implicate ventral frontopolar dysfunction as a core abnormality underpinning bipolar disorder and confirm that overactivation in regions involved in emotional arousal is present even in tasks that do not typically engage emotional systems. © 2012 Informa Healthcare.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel device for the detection and characterisation of static magnetic fields is presented. It consists of a femtosecond laser inscribed fibre Bragg grating (FBG) that is incorporated into an optical fibre with a femtosecond laser micromachined slot. The symmetry of the fibre is broken by the micro-slot, producing non-uniform strain across the fibre cross section. The sensing region is coated with Terfenol-D making the device sensitive to static magnetic fields, whereas the symmetry breaking results in a vectorial sensor for the detection of magnetic fields as low as 0.046 mT with a resolution of ±0.3mT in transmission and ±0.7mT in reflection. The sensor output is directly wavelength encoded from the FBG filtering, leading to simple demodulation through the monitoring of wavelength shifts that result as the fibre structure changes shape in response to the external magnetic field. The use of a femtosecond laser to both inscribe the FBG and micro-machine the slot in a single stage, prior to coating the device, significantly simplifies the sensor fabrication.