5 resultados para magnetic rotor center
em Aston University Research Archive
Resumo:
In induction machines the tooth frequency losses due to permeance variation constitute a signif'icant, portion of the total loss. In order to predict and estimate these losses it, is essential to obtain a clear understanding of the no-load distribution of the air gap magnetic field and the magnitude of flux pulsation in both stator and rotor teeth. The existing theories and methods by which the air gap permeance variation in a doubly slotted structure is calculated are either empirical or restricted. The main objective of this thesis is to obtain a detailed analysis of the no-load air gap magnetic field distribution and the effect of air gap geometry on the magnitude and waveform of the tooth flux pulsation. In this thesis a detaiiled theoretical and experimental analysis of flux distribution not only leads to a better understanding of the distribution of no-load losses but also provides theoretical analysis for calculating the losses with greater accuracy
Resumo:
This thesis describes an experimental and analytic study of the effects of magnetic non-linearity and finite length on the loss and field distribution in solid iron due to a travelling mmf wave. In the first half of the thesis, a two-dimensional solution is developed which accounts for the effects of both magnetic non-linearity and eddy-current reaction; this solution is extended, in the second half, to a three-dimensional model. In the two-dimensional solution, new equations for loss and flux/pole are given; these equations contain the primary excitation, the machine parameters and factors describing the shape of the normal B-H curve. The solution applies to machines of any air-gap length. The conditions for maximum loss are defined, and generalised torque/frequency curves are obtained. A relationship between the peripheral component of magnetic field on the surface of the iron and the primary excitation is given. The effects of magnetic non-linearity and finite length are combined analytically by introducing an equivalent constant permeability into a linear three-dimensional analysis. The equivalent constant permeability is defined from the non-linear solution for the two-dimensional magnetic field at the axial centre of the machine to avoid iterative solutions. In the linear three-dimensional analysis, the primary excitation in the passive end-regions of the machine is set equal to zero and the secondary end faces are developed onto the air-gap surface. The analyses, and the assumptions on which they are based, were verified on an experimental machine which consists of a three-phase rotor and alternative solid iron stators, one with copper end rings, and one without copper end rings j the main dimensions of the two stators are identical. Measurements of torque, flux /pole, surface current density and radial power flow were obtained for both stators over a range of frequencies and excitations. Comparison of the measurements on the two stators enabled the individual effects of finite length and saturation to be identified, and the definition of constant equivalent permeability to be verified. The penetration of the peripheral flux into the stator with copper end rings was measured and compared with theoretical penetration curves. Agreement between measured and theoretical results was generally good.
Resumo:
The purpose of this investigation was to design a novel magnetic drive and bearing system for a new centrifugal rotary blood pump (CRBP). The drive system consists of two components: (i) permanent magnets within the impeller of the CRBP; and (ii) the driving electromagnets. Orientation of the magnets varies from axial through to 60° included out-lean (conical configuration). Permanent magnets replace the electromagnet drive to allow easier characterization. The performance characteristics tested were the axial force of attraction between the stator and rotor at angles of rotational alignment, Ø, and the corresponding torque at those angles. The drive components were tested for various magnetic cone angles, ?. The test was repeated for three backing conditions: (i) non-backed; (ii) steel-cupped; and (iii) steel plate back-iron, performed on an Instron tensile testing machine. Experimental results were expanded upon through finite element and boundary element analysis (BEM). The force/torque characteristics were maximal for a 12-magnet configuration at 0° cone angle with steel-back iron (axial force = 60 N, torque = 0.375 Nm). BEM showed how introducing a cone angle increases the radial restoring force threefold while not compromising axial bearing force. Magnets in the drive system may be orientated not only to provide adequate coupling to drive the CRBP, but to provide significant axial and radial bearing forces capable of withstanding over 100 m/s2 shock excitation on the impeller. Although the 12 magnet 0° (?) configuration yielded the greatest force/torque characteristic, this was seen as potentially unattractive as this magnetic cone angle yielded poor radial restoring force characteristics.
Resumo:
In analogy to a common synthesis of 1-substituted 5-H tetrazoles (Tetrahedron Lett. 36 (1995)1759; Beloruss. Gos. Univ., Minsk, USSR. Khim. Geterotsikl. Soedin. 11 (1985) 1521; Beloruss. Gos. Univ., Minsk, USSR. Khim. Geterotsikl. Soedin. 1 (1991) 66; BGU, Belarus. Vestsi Akad. Navuk Belarusi, Ser. Khim. Navuk 1 (1992) 73), the new bidentate ligand 1,2-bis(tetrazol-1-yl)ethane [endi] was synthesized and characterized by X-ray diffraction, NMR, IR and UV–Vis spectroscopy. By using iron(II) tetrafluoroborate hexahydrate the complexation with this ligand yields a 1-dimensional linear coordination polymer similar to the recently published chain compound (Inorg. Chem. 39 (2000) 1891) exhibiting a thermally induced spin-crossover phenomenon. Similar to the 1,2-bis(tetrazol-1-yl)propane-bridged compound, our 1,2-bis(tetrazol-1-yl)ethane-bridged compound shows a gradual spin transition, but the spin-crossover temperature T1/2≈140 K is found to be 10 K above the other T1/2. The T1/2 was determined by temperature-dependent 57Fe-Mössbauer, far FT-IR and UV–Vis spectroscopy as well as by temperature-dependent magnetic susceptibility measurements. Single crystals of the complex were grown in situ from a solution of the ligand and iron(II) tetrafluoroborate. The X-ray structure determinations of both the high spin as well as the low spin state of the compound revealed a solid state structure, which is comparable to that of catena-[Fe(1,2-bis(tetrazole-1-yl)propane)3](ClO4)2 (Inorg. Chem. 39 (2000) 1891; 2nd TMR-TOSS Meeting, 4th Spin Crossover Family Meeting, Lufthansa Training Center, Seeheim/Germany, April 30–May 2, 1999). Both the 1,2-bis(tetrazol-1-yl)propane-bridged and our compound do not show a thermal hysteresis effect (J. Am. Chem. Soc. 115 (1993) 9810; Inorg. Chim. Acta 37 (1979) 169; Chem. Phys. Lett. 93 (1982) 567). The synthesis of the complex described in the experimental section yielded a fine powdered product being poorly soluble in most common solvents. The single crystal measurements were done with crystals obtained by various diffusion methods. Most of them yielded either thin needles or small hexagonal prism crystals depending on the specific conditions.
Resumo:
Electrically excited synchronous machines with brushes and slip rings are popular but hardly used in inflammable and explosive environments. This paper proposes a new brushless electrically excited synchronous motor with a hybrid rotor. It eliminates the use of brushes and slip rings so as to improve the reliability and cost-effectiveness of the traction drive. The proposed motor is characterized with two sets of stator windings with two different pole numbers to provide excitation and drive torque independently. This paper introduces the structure and operating principle of the machine, followed by the analysis of the air-gap magnetic field using the finite-element method. The influence of the excitation winding's pole number on the coupling capability is studied and the operating characteristics of the machine are simulated. These are further examined by the experimental tests on a 16 kW prototype motor. The machine is proved to have good static and dynamic performance, which meets the stringent requirements for traction applications.