43 resultados para machining jig

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of "Helical Interference" in milled slots is examined and a coherent theory for the geometry of such surfaces is presented. An examination of the relevant literature shows a fragmented approach to the problem owing to its normally destructive nature, so a complete analysis is developed for slots of constant lead, thus giving a united and exact theory for many different setting parameters and a range of cutter shapes. For the first time, a theory is developed to explain the "Interference Surface" generated in variable lead slots for cylindrical work and attention is drawn to other practical surfaces, such as cones, where variable leads are encountered. Although generally outside the scope of this work, an introductory analysis of these cases is considered in order to develop the cylindrical theory. Special emphasis is laid upon practical areas where the interference mechanism can be used constructively and its application as the rake face of a cutting tool is discussed. A theory of rake angle for such cutting tools is given for commonly used planes, and relative variations in calculated rake angle between planes is examined. Practical tests are conducted to validate both constant lead and variable lead theories and some design improvements to the conventional dividing head are suggested in order to manufacture variable lead workpieces, by use of a "superposed" rotation. A prototype machine is manufactured and its kinematic principle given for both linear and non-linearly varying superposed rotations. Practical workpieces of the former type are manufactured and compared with analytical predictions,while theoretical curves are generated for non-linear workpieces and then compared with those of linear geometry. Finally suggestions are made for the application of these principles to the manufacture of spiral bevel gears, using the "Interference Surface" along a cone as the tooth form.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When machining a large-scale aerospace part, the part is normally located and clamped firmly until a set of features are machined. When the part is released, its size and shape may deform beyond the tolerance limits due to stress release. This paper presents the design of a new fixing method and flexible fixtures that would automatically respond to workpiece deformation during machining. Deformation is inspected and monitored on-line, and part location and orientation can be adjusted timely to ensure follow-up operations are carried out under low stress and with respect to the related datum defined in the design models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The implementation of advanced manufacturing systems with high process capability is an essential requirement for the high value manufacturing industries. To ensure high process capability, industry needs to deal with the requirement for tight tolerances and the unavoidable variations in materials, and manufacturing and inspection processes. In the case of machining superalloys, such variations result in the need to change the machine parameters for producing different batches of materials from different suppliers. This is required in order to get the process under control and reduce waste and defects, leading to better competitiveness. This papers discuss the variability in materials and the corresponding process requirements when machining superalloys, and highlights the impact of metrology in achieving manufacturing process improvement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accuracy of many aerospace structures is limited by the accuracy of assembly tooling which is in turn limited by the accuracy of the measurements used to set the tooling. Further loss of accuracy results from different rates of thermal expansion for the components and tooling. This paper describes improved tooling designs and setting processes which have the potential to significantly improve the accuracy of aerospace structures. The most advanced solution described is environmentally isolated interferometer networks embedded within tooling combined with active compensation of component pick-ups. This would eliminate environmental effects on measurements while also allowing compensation for thermal expansion. A more immediately realizable solution is the adjustment of component pick-ups using micrometer jacking screws allowing multilateration to be employed during the final stages of the setting process to generate the required offsets. Copyright © 2011 SAE International.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Femtosecond laser microfabrication has emerged over the last decade as a 3D flexible technology in photonics. Numerical simulations provide an important insight into spatial and temporal beam and pulse shaping during the course of extremely intricate nonlinear propagation (see e.g. [1,2]). Electromagnetics of such propagation is typically described in the form of the generalized Non-Linear Schrdinger Equation (NLSE) coupled with Drude model for plasma [3]. In this paper we consider a multi-threaded parallel numerical solution for a specific model which describes femtosecond laser pulse propagation in transparent media [4, 5]. However our approach can be extended to similar models. The numerical code is implemented in NVIDIA Graphics Processing Unit (GPU) which provides an effitient hardware platform for multi-threded computing. We compare the performance of the described below parallel code implementated for GPU using CUDA programming interface [3] with a serial CPU version used in our previous papers [4,5]. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis has focused on three key areas of interest for femtosecond micromachining and inscription. The first area is micromachining where the work has focused on the ability to process highly repeatable, high precision machining with often extremely complex geometrical structures with little or no damage. High aspect ratio features have been demonstrated in transparent materials, metals and ceramics. Etch depth control was demonstrated especially in the work on phase mask fabrication. Practical chemical sensing and microfluidic devices were also fabricated to demonstrate the capability of the techniques developed during this work. The second area is femtosecond inscription. Here, the work has utilised the non-linear absorption mechanisms associated with femtosecond pulse-material interactions to create highly localised refractive index changes in transparent materials to create complex 3D structures. The techniques employed were then utilised in the fabrication of Phase masks and Optical Coherence Tomography (OCT) phantom calibration artefacts both of which show the potential to fill voids in the development of the fields. This especially the case for the OCT phantoms where there exists no previous artefacts of known shape, allowing for the initial specification of parameters associated with the quality of OCT machines that are being taken up across the world in industry and research. Finally the third area of focus was the combination of all of the techniques developed through work in planar samples to create a range of artefacts in optical fibres. The development of techniques and methods for compensating for the geometrical complexities associated with working with the cylindrical samples with varying refractive indices allowed for fundamental inscription parameters to be examined, structures for use as power monitors and polarisers with the optical fibres and finally the combination of femtosecond inscription and ablation techniques to create a magnetic field sensor with an optical fibre coated in Terfenol-D with directional capability. Through the development of understanding, practical techniques and equipment the work presented here demonstrates several novel pieces of research in the field of femtosecond micromachining and inscription that has provided a broad range of related fields with practical devices that were previously unavailable or that would take great cost and time to facilitate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single- and multi-core passive and active germanate and tellurite glass fibers represent a new class of fiber host for in-fiber photonics devices and applications in mid-IR wavelength range, which are in increasing demand. Fiber Bragg grating (FBG) structures have been proven as one of the most functional in-fiber devices and have been mass-produced in silicate fibers by UV-inscription for almost countless laser and sensor applications. However, because of the strong UV absorption in germanate and tellurite fibers, FBG structures cannot be produced by UVinscription. In recent years femtosecond (fs) lasers have been developed for laser machining and microstructuring in a variety of glass fibers and planar substrates. A number of papers have been reported on fabrication of FBGs and long-period gratings in optical fibers and also on the photosensitivity mechanism using 800nm fs lasers. In this paper, we demonstrate for the first time the fabrication of FBG structures created in passive and active single- and three-core germanate and tellurite glass fibers by using 800nm fs-inscription and phase mask technique. With a fs peak power intensity in the order of 1011W/cm2, the FBG spectra with 2nd and 3rd order resonances at 1540nm and 1033nm in a single-core germanate glass fiber and 2nd order resonances between ~1694nm and ~1677nm with strengths up to 14dB in all three cores of three-core passive and active tellurite fibers were observed. Thermal and strain properties of the FBGs made in these mid-IR glass fibers were characterized, showing an average temperature responsivity of ~20pm/°C and a strain sensitivity of 1.219±0.003pm/µe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes physics of nonlinear ultra-short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro-machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron-ion or electron-hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser-plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self-focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio-temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed. ©2006 American Institute of Physics

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Considerable attention has been given in the literature to identifying and describing the effective elements which positively affect the improvement of product reliability. These have been perceived by many as the 'state of the art' in the manufacturing industry. The applicability, diffusion and effectiveness of such methods and philosophies, as a means of systematically improving the reliability of a product, come in the main from case studies and single and infra-industry empirical studies. These studies have both been carried out within the wider context of quality assurance and management, and taking reliability as a discipline in its own right. However, it is somewhat of a surprise that there are no recently published findings or research studies on the adoption of these methods by the machine tool industry. This may lead one to construct several hypothesised paradigms: (a) that machine tool manufacturers compared to other industries, are slow to respond to propositions given in the literature by theorists or (b) this may indicate that a large proportion of the manufacturers make little use of the reliability improvement techniques as described in the literature, with the overall perception that they will not lead to any significant improvements? On the other hand, it is evident that hypothetical verification of the operational and engineering methods of reliability achievement and improvement adopted in the machine tool industry is less widely researched. Therefore, research into this area is needed in order to explore the 'state of the art' practice in the machine tool industry. This is in terms of the status, structure and activities of the operation of the reliability function. This paper outlines a research programme being conducted with the co-operation of a leading machine tool manufacturer, whose UK manufacturing plant produces in the main Vertical Machining Centres (VMCs) and is continuously undergoing incremental transitions in product reliability improvement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of technology management in achieving improved manufacturing performance has been receiving increased attention as enterprises are becoming more exposed to competition from around the world. In the modern market for manufactured goods the demand is now for more product variety, better quality, shorter delivery and greater flexibility, while the financial and environmental cost of resources has become an urgent concern to manufacturing managers. This issue of the International Journal of Technology Management addresses the question of how the diffusion, implementation and management of technology can improve the performance of manufacturing industries. The authors come from a large number of different countries and their contributions cover a wide range of topics within this general theme. Some papers are conceptual, others report on research carried out in a range of different industries including steel production, iron founding, electronics, robotics, machinery, precision engineering, metal working and motor manufacture. In some cases they describe situations in specific countries. Several are based on presentations made at the UK Operations Management Association's Sixth International Conference held at Aston University at which the conference theme was 'Achieving Competitive Edge: Getting Ahead Through Technology and People'. The first two papers deal with questions of advanced manufacturing technology implementation and management. Firstly Beatty describes a three year longitudinal field study carried out in ten Canadian manufacturing companies using CADICAM and CIM systems. Her findings relate to speed of implementation, choice of system type, the role of individuals in implementation, organization and job design. This is followed by a paper by Bessant in which he argues that a more a strategic approach should be taken towards the management of technology in the 1990s and beyond. Also considered in this paper are the capabilities necessary in order to deploy advanced manufacturing technology as a strategic resource and the way such capabilities might be developed within the firm. These two papers, which deal largely with the implementation of hardware, are supplemented by Samson and Sohal's contribution in which they argue that a much wider perspective should be adopted based on a new approach to manufacturing strategy formulation. Technology transfer is the topic of the following two papers. Pohlen again takes the case of advanced manufacturing technology and reports on his research which considers the factors contributing to successful realisation of AMT transfer. The paper by Lee then provides a more detailed account of technology transfer in the foundry industry. Using a case study based on a firm which has implemented a number of transferred innovations a model is illustrated in which the 'performance gap' can be identified and closed. The diffusion of technology is addressed in the next two papers. In the first of these, by Lowe and Sim, the managerial technologies of 'Just in Time' and 'Manufacturing Resource Planning' (or MRP 11) are examined. A study is described from which a number of factors are found to influence the adoption process including, rate of diffusion and size. Dahlin then considers the case of a specific item of hardware technology, the industrial robot. Her paper reviews the history of robot diffusion since the early 1960s and then tries to predict how the industry will develop in the future. The following two papers deal with the future of manufacturing in a more general sense. The future implementation of advanced manufacturing technology is the subject explored by de Haan and Peters who describe the results of their Dutch Delphi forecasting study conducted among a panel of experts including scientists, consultants, users and suppliers of AMT. Busby and Fan then consider a type of organisational model, 'the extended manufacturing enterprise', which would represent a distinct alternative pure market-led and command structures by exploiting the shared knowledge of suppliers and customers. The three country-based papers consider some strategic issues relating manufacturing technology. In a paper based on investigations conducted in China He, Liff and Steward report their findings from strategy analyses carried out in the steel and watch industries with a view to assessing technology needs and organizational change requirements. This is followed by Tang and Nam's paper which examines the case of machinery industry in Korea and its emerging importance as a key sector in the Korean economy. In his paper which focuses on Venezuela, Ernst then considers the particular problem of how this country can address the problem of falling oil revenues. He sees manufacturing as being an important contributor to Venezuela's future economy and proposes a means whereby government and private enterprise can co-operate in development of the manufacturing sector. The last six papers all deal with specific topics relating to the management manufacturing. Firstly Youssef looks at the question of manufacturing flexibility, introducing and testing a conceptual model that relates computer based technologies flexibility. Dangerfield's paper which follows is based on research conducted in the steel industry. He considers the question of scale and proposes a modelling approach determining the plant configuration necessary to meet market demand. Engstrom presents the results of a detailed investigation into the need for reorganising material flow where group assembly of products has been adopted. Sherwood, Guerrier and Dale then report the findings of a study into the effectiveness of Quality Circle implementation. Stillwagon and Burns, consider how manufacturing competitiveness can be improved individual firms by describing how the application of 'human performance engineering' can be used to motivate individual performance as well as to integrate organizational goals. Finally Sohal, Lewis and Samson describe, using a case study example, how just-in-time control can be applied within the context of computer numerically controlled flexible machining lines. The papers in this issue of the International Journal of Technology Management cover a wide range of topics relating to the general question of improving manufacturing performance through the dissemination, implementation and management of technology. Although they differ markedly in content and approach, they have the collective aim addressing the concepts, principles and practices which provide a better understanding the technology of manufacturing and assist in achieving and maintaining a competitive edge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advances in both computer technology and the necessary mathematical models capable of capturing the geometry of arbitarily shaped objects has led to the development in this thesis of a surface generation package called 'IBSCURF' aimed at providing a more economically viable solution to free-form surface manufacture. A suit of computer programs written in FORTRAN 77 has been developed to provide computer aids for every aspect of work in designing and machining free-form surfaces. A vector-valued parametric method was used for shape description and a lofting technique employed for the construction of the surface. The development of the package 'IBSCURF' consists of two phases. The first deals with CAD. The design process commences in defining the cross-sections which are represented by uniform B-spline curves as approximations to give polygons. The order of the curve and the position and number of the polygon vertices can be used as parameters for the modification to achieve the required curves. When the definitions of the sectional curves is complete, the surface is interpolated over them by cubic cardinal splines. To use the CAD function of the package to design a mould for a plastic handle, a mathematical model was developed. To facilitate the integration of design and machining using the mathematical representation of the surface, the second phase of the package is concerned with CAM which enables the generation of tool offset positions for ball-nosed cutters and a general post-processor has been developed which automatically generates NC tape programs for any CNC milling machine. The two phases of these programs have been successfully implemented, as a CAD/CAM package for free-form surfaces on the VAX 11/750 super-minicomputer with graphics facilities for displaying drawings interactively on the terminal screen. The development of this package has been beneficial in all aspects of design and machining of free form surfaces.