13 resultados para lymphocyte and humoral alterations
em Aston University Research Archive
Resumo:
BACKGROUND: Patients with advanced cancer suffer from cachexia, which is characterised by a marked weight loss, and is invariably associated with the presence of tumoral and humoral factors which are mainly responsible for the depletion of fat stores and muscular tissue. METHODS: In this work, we used cytotoxicity and enzymatic assays and morphological analysis to examine the effects of a proteolysis-inducing factor (PIF)-like molecule purified from ascitic fluid of Walker tumour-bearing rats (WF), which has been suggested to be responsible for muscle atrophy, on cultured C2C12 muscle cells. RESULTS: WF decreased the viability of C2C12 myotubes, especially at concentrations of 20-25 mug.mL-1. There was an increase in the content of the pro-oxidant malondialdehyde, and a decrease in antioxidant enzyme activity. Myotubes protein synthesis decreased and protein degradation increased together with an enhanced in the chymotrypsin-like enzyme activity, a measure of functional proteasome activity, after treatment with WF. Morphological alterations such as cell retraction and the presence of numerous cells in suspension were observed, particularly at high WF concentrations. CONCLUSION: These results indicate that WF has similar effects to those of proteolysis-inducing factor, but is less potent than the latter. Further studies are required to determine the precise role of WF in this experimental model. © 2008 Yano et al; licensee BioMed Central Ltd.
Resumo:
The thesis investigated progression of the central 10° visual field with structural changes at the macula in a cross-section of patients with varying degrees of agerelated macular degeneration (AMD). The relationships between structure and function were investigated for both standard and short-wavelength automated perimetry (SWAP). Factors known to influence the measure of visual field progression were considered, including the accuracy of the refractive correction on SWAP thresholds and the learning effect. Techniques of assessing the structure to function relationships between fundus images and the visual field were developed with computer programming and evaluated for repeatability. Drusen quantification of fundus photographs and retro-mode scanning laser ophthalmoscopic images was performed. Visual field progression was related to structural changes derived from both manual and automated methods. Principal Findings: • Visual field sensitivity declined with advancing stage of AMD. SWAP showed greater sensitivity to progressive changes than standard perimetry. • Defects were confined to the central 5°. SWAP defects occurred at similar locations but were deeper and wider than corresponding standard perimetry defects. • The central field became less uniform as severity of AMD increased. SWAP visual field indices of focal loss were of more importance when detecting early change in AMD, than indices of diffuse loss. • The decline in visual field sensitivity over stage of severity of AMD was not uniform, whereas a linear relationship was found between the automated measure of drusen area and visual field parameters. • Perimetry exhibited a stronger relationship with drusen area than other measures of visual function. • Overcorrection of the refraction for the working distance in SWAP should be avoided in subjects with insufficient accommodative facility. • The perimetric learning effect in the 10° field did not differ significantly between normal subjects and AMD patients. • Subretinal deposits appeared more numerous in retro-mode imaging than in fundus photography.
Resumo:
Most subunit vaccines require adjuvants in order to induce protective immune responses to the targeted pathogen. However, many of the potent immunogenic adjuvants display unacceptable local or systemic reactogenicity. Liposomes are spherical vesicles consisting of single (unilamellar) or multiple (multilamellar) phospholipid bi-layers. The lipid membranes are interleaved with an aqueous buffer, which can be utilised to deliver hydrophilic vaccine components, such as protein antigens or ligands for immune receptors. Liposomes, in particular cationic DDA:TDB vesicles, have been shown in animal models to induce strong humoral responses to the associated antigen without increased reactogenicity, and are currently being tested in Phase I human clinical trials. We explored several modifications of DDA:TDB liposomes--including size, antigen association and addition of TLR agonists--to assess their immunogenic capacity as vaccine adjuvants, using Ovalbumin (OVA) protein as a model protein vaccine. Following triple homologous immunisation, small unilamellar vesicles (SUVs) with no TLR agonists showed a significantly higher capacity for inducing spleen CD8 IFN? responses against OVA in comparison with the larger multilamellar vesicles (MLVs). Antigen-specific antibody reponses were also higher with SUVs. Addition of the TLR3 and TLR9 agonists significantly increased the adjuvanting capacity of MLVs and OVA-encapsulating dehydration-rehydration vesicles (DRVs), but not of SUVs. Our findings lend further support to the use of liposomes as protein vaccine adjuvants. Importantly, the ability of DDA:TDB SUVs to induce potent CD8 T cell responses without the need for adding immunostimulators would avoid the potential safety risks associated with the clinical use of TLR agonists in vaccines adjuvanted with liposomes.
Resumo:
The formulation of plasmid DNA (pDNA) in cationic liposomes is a promising strategy to improve the potency of DNA vaccines. In this respect, physicochemical parameters such as liposome size may be important for their efficacy. The aim of the current study was to investigate the effect of vesicle size on the in vivo performance of liposomal pDNA vaccines after subcutaneous vaccination in mice. The tissue distribution of cationic liposomes of two sizes, 500 nm (PDI 0.6) and 140 nm (PDI 0.15), composed of egg PC, DOPE and DOTAP, with encapsulated OVA-encoding pDNA, was studied by using dual radiolabeled pDNA-liposomes. Their potency to elicit cellular and humoral immune responses was investigated upon application in a homologous and heterologous vaccination schedule with 3 week intervals. It was shown that encapsulation of pDNA into cationic lipsomes resulted in deposition at the site of injection, and strongest retention was observed at large vesicle size. The vaccination studies demonstrated a more robust induction of OVA-specific, functional CD8+ T-cells and higher antibody levels upon vaccination with small monodisperse pDNA-liposomes, as compared to large heterodisperse liposomes or naked pDNA. The introduction of a PEG-coating on the small cationic liposomes resulted in enhanced lymphatic drainage, but immune responses were not improved when compared to non-PEGylated liposomes. In conclusion, it was shown that the physicochemical properties of the liposomes are of crucial importance for their performance as pDNA vaccine carrier, and cationic charge and small size are favorable properties for subcutaneous DNA vaccination.
Resumo:
The aim of this research was to formulate a novel biodegradable, biocompatible cationic microparticle vector for the delivery of DNA vaccines. The work builds upon previous research by Singh et al which described the adsorption of DNA to the surface of poly (D,L-lactide-co-glycolide) (PLG) microparticles stabilised with the surfactant cetyltrimethyl ammonium bromide (CT AB). This work demonstrated the induction of antibody and cellular immune responses to HIV proteins encoded on plasmid DNA adsorbed to the particle surface in mice, guinea pigs and non-human primates (Singh et aI, 2000; O'Hagan et aI, 2001). However, the use of surfactants in microparticle formulations for human vaccination is undesirable due to long term safety issues. Therefore, the present research aim was to develop an adsorbed DNA vaccine with enhanced potency and increased safety compared to CTAB stabilised PLG microparticles (PLG/CTAB) by replacement of the surfactant CTAB with an alternative cationic agent. The cationic polymers chitosan and poly (N- vinylpyrrolidone/2-dimethylaminoethyl methacrylate), dimethyl sulfate quaternary (PVP-PDAEMA) were investigated as alternative stabilisers to CTAB. From a variety of initial formulations, the most promising vector(s) for DNA vaccination were selected based on physicochemical data (chapter 3) and in vitro DNA loading and release characteristics (chapter 4). The chosen formulation(s) were analysed in greater depth (chapters 3 and 4), and gene expression was assessed by in vitro cell transfection studies using 293T kidney epithelial and C2C12 myoblast non-phagocytic cell lines (chapter 5). The cytotoxicity of the microparticles and their constituents were also evaluated in vitro (chapter 5). Stability and suitability of the formulation(s) for commercial production were assessed by cryopreparation and lyophilisation studies (chapters 3 and 4). Gene expression levels in cells of the immune response were evaluated by microparticle transfection of the dendritic cell (DC) line 2.4 and primary bone marrow derived DCs (chapter 6). In vivo, mice were injected i.m. with the formulations deemed most promising on the basis of in vitro studies and humoral and cellular immune responses were evaluated (chapter 6).
Resumo:
Various neurotoxins were investigated to assess their suitability for developing an animal model to study partial brain BH4 deficiency, neurotransmitters and behavioural alterations. Acute dosing with lead, diethylstilboestrol (DES), amphetamine and scopolamine produced no significant changes in rat brain BH4 metabolism though total biopterins in the liver were significantly reduced by lead and DES. Acute starvation of adult rats decreased brain biopterins. This loss of biopterins may be due to enhanced oxidative catabolism of the active cofactor caused by glutathione depletion. Dietary administration of a BH4 biosynthesis inhibitor, DAHP, consistently decreased brain total biopterins in weaner rats but did not alter the levels of DA, NA, 5-HT or metabolites. However the DAHP diet also induced a marked reduction in food intake. Rats subjected to an equivalent degree of food restriction without inhibitor showed significant but less severe reductions in brain biopterins and again no effect on transmitter levels. DAHP produced a significant decrease in locomotor activity and rearing. This could not be ascribed to reduction in food intake as animals subjected to just dietary restriction showed an increase in these activities. As gross brain levels of DA, NA and 5-HT were unaltered by DAHP the behavioural changes associated with the induced deficiency in brain total biopterins might not have been mediated through the action of these compounds. Although localised changes in neurotransmitter levels may have been obscured by gross analysis it is also possible that the behaviour changes were mediated by a role of BH4 not yet elucidated. Long-term administration of a high aluminium low calcium diet to mice produced no effect on gross brain total biopterins, catecholamines, serotonin or choline acetyltransferase activity though significant behavioural changes were observed.
Resumo:
In the introduction a brief outline of the possible mechanisms involved in the process of cellular necrosis with particular emphasis on skeletal muscle necrosis after antiChE is discussed. Ecothiopate (ECO), an antiChE, was shown to produce dose-dependent inhibition of both AChE and BuChE in diaphragm and blood of mice. Inhibition of AChE resulted in dose-dependent influx of calcium at the junctional region with the consequent development of morphological and biochemical alterations. Non-necrotising doses of ECO caused hypercontractions of varying severity, distorted end plate and slight elevation of serum creatine kinase (CK). Necrotising doses of ECO further caused contraction clumps, loss of striations and procion staining with high serum CK. The extent of ECO-induced myopathy depended on entry of extracellular calcium rather than the degree of AChE inhibition. The essential Ca2+ mediated process(es) in ECO-induced myopathy was thought to be the generation of superoxide and superoxide-derived free radicals and/or lipid peroxidation. Mitochondria and xanthine oxidase may be the major contributors to the generation of superoxide. No evidence was found for the depletion of high energy phosphates. ECO-induced myopathy could be successfully prevented by prior administration of pyridostigmine or various antioxidants, the most effective being Vit E or Vit E + N-acetylcysteine. Allopurinol or N-acetylcysteine alone were also effective. However, the use of a wide range of membrane end plate channel blockers or non-quantal release blockers were unsuccessful in the prevention of ECO-induced myopathy.
A copper-hydrogen peroxide redox system induces dityrosine cross-links and chemokine oligomerisation
Resumo:
The activity of the chemoattractant cytokines, the chemokines, in vivo is enhanced by oligomerisation and aggregation on glycosaminoglycan (GAG), particularly heparan sulphate, side chains of proteoglycans. The chemokine RANTES (CCL5) is a T-lymphocyte and monocyte chemoattractant, which has a minimum tetrameric structure for in vivo activity and a propensity to form higher order oligomers. RANTES is unusual among the chemokines in having five tyrosine residues, an amino acid susceptible to oxidative cross-linking. Using fluorescence emission spectroscopy, Western blot analysis and LCMS-MS, we show that a copper/H2O2 redox system induces the formation of covalent dityrosine cross-links and RANTES oligomerisation with the formation of tetramers, as well as higher order oligomers. Amongst the transition metals tested, namely copper, nickel, mercury, iron and zinc, copper appeared unique in this respect. At high (400 µM) concentrations of H2O2, RANTES monomers, dimers and oligomers are destroyed, but heparan sulphate protects the chemokine from oxidative damage, promoting dityrosine cross-links and multimer formation under oxidative conditions. Low levels of dityrosine cross-links were detected in copper/H2O2-treated IL-8 (CXCL8), which has one tyrosine residue, and none were detected in ENA-78 (CXCL5), which has none. Redox-treated RANTES was fully functional in Boyden chamber assays of T-cell migration and receptor usage on activated T-cells following RANTES oligomerisation was not altered. Our results point to a protective, anti-oxidant, role for heparan sulphate and a previously unrecognised role for copper in chemokine oligomerisation that may offer an explanation for the known anti-inflammatory effect of copper-chelators such as penicillamine and tobramycin.
Resumo:
Adjuvants are substances that enhance immune responses and thus improve the efficacy of vaccination. Few adjuvants are available for use in humans, and the one that is most commonly used (alum) often induces suboptimal immunity for protection against many pathogens. There is thus an obvious need to develop new and improved adjuvants. We have therefore taken an approach to adjuvant discovery that uses in silico modeling and structure-based drug-design. As proof-of-principle we chose to target the interaction of the chemokines CCL22 and CCL17 with their receptor CCR4. CCR4 was posited as an adjuvant target based on its expression on CD4(+)CD25(+) regulatory T cells (Tregs), which negatively regulate immune responses induced by dendritic cells (DC), whereas CCL17 and CCL22 are chemotactic agents produced by DC, which are crucial in promoting contact between DC and CCR4(+) T cells. Molecules identified by virtual screening and molecular docking as CCR4 antagonists were able to block CCL22- and CCL17-mediated recruitment of human Tregs and Th2 cells. Furthermore, CCR4 antagonists enhanced DC-mediated human CD4(+) T cell proliferation in an in vitro immune response model and amplified cellular and humoral immune responses in vivo in experimental models when injected in combination with either Modified Vaccinia Ankara expressing Ag85A from Mycobacterium tuberculosis (MVA85A) or recombinant hepatitis B virus surface antigen (rHBsAg) vaccines. The significant adjuvant activity observed provides good evidence supporting our hypothesis that CCR4 is a viable target for rational adjuvant design.
Resumo:
Vesicular adjuvant systems composing dimethyldioctadecylammonium (DDA) can promote both cell-mediated and humoral immune responses to the tuberculosis vaccine fusion protein in mice. However, these DDA preparations were found to be physically unstable, forming aggregates under ambient storage conditions. Therefore there is a need to improve the stability of such systems without undermining their potent adjuvanticity. To this end, the effect of incorporating non-ionic surfactants, such as 1-monopalmitoyl glycerol (MP), in addition to cholesterol (Chol) and trehalose 6,6′-dibehenate (TDB), on the stability and efficacy of these vaccine delivery systems was investigated. Differential scanning calorimetry revealed a reduction in the phase transition temperature (T c) of DDA-based vesicles by ∼12°C when MP and cholesterol (1:1 molar ratio) were incorporated into the DDA system. Transmission electron microscopy (TEM) revealed the addition of MP to DDA vesicles resulted in the formation of multi-lamellar vesicles. Environmental scanning electron microscopy (ESEM) of MP-Chol-DDA-TDB (16:16:4:0.5 μmol) indicated that incorporation of antigen led to increased stability of the vesicles, perhaps as a result of the antigen embedding within the vesicle bilayers. At 4°C DDA liposomes showed significant vesicle aggregation after 28 days, although addition of MP-Chol or TDB was shown to inhibit this instability. Alternatively, at 25°C only the MP-based systems retained their original size. The presence of MP within the vesicle formulation was also shown to promote a sustained release of antigen in-vitro. The adjuvant activity of various systems was tested in mice against three subunit antigens, including mycobacterial fusion protein Ag85b-ESAT-6, and two malarial antigens (Merozoite surface protein 1, MSP1, and the glutamate rich protein, GLURP). The MP- and DDA-based systems induced antibody responses at comparable levels whereas the DDA-based systems induced more powerful cell-mediated immune responses. © 2006 The Authors.
Resumo:
We studied the structural and functional alterations of SERCA in rats suffering from adjuvant arthritis (AA). AA was induced by intradermal administration of Mycobacterium butyricum (MB) to the base of the tail of Lewis rats. Injury of SERCA from skeletal muscles of AA rats was analyzed on days 7, 14, 21 and 28 after MB injection. Neither fragmentation, aggregation of SERCA protein, alterations in SH groups, nor oxidation of phosphatidylcholines and phosphatidylethanolamines in SR vesicles were observed in animals with AA. The only ROS/RNS modification was increased formation of nitrotyrosine. The activity of SERCA from AA animals decreased on day 21 after MB injection and was associated with a significant increase of protein carbonyls in sarcoplasmic reticulum (SR). In contrast, on day 28 an increase of SERCA activity was observed and protein carbonyl level reversed to control level. Concerning kinetic parameters, maximum reaction velocity (Vmax) decrease and increase was observed with respect to both substrates (Ca, ATP) on days 21 and 28, respectively, suggesting possible conformational changes of the enzyme. These changes were not associated with alterations in nucleotide binding site situated in cytosol, but rather with tryptophan fluorescence intensity ratio (cytosol/membrane) related to the transmembrane domain of SERCA. Elevated SERCA activity on day 28 was caused by its higher expression. Acidic phospholipids (PA), probably present in SR of AA rats, may contribute to the elevation of Ca-ATPase activity, as PA administration in vitro increased this activity.
Resumo:
Structural evidence has demonstrated that P-glycoprotein (P-gp) undergoes considerable conformational changes during catalysis, and these alterations are important in drug interaction. Knowledge of which regions in P-gp undergo conformational alterations will provide vital information to elucidate the locations of drug binding sites and the mechanism of coupling. A number of investigations have implicated transmembrane segment six (TM6) in drug-P-gp interactions, and a cysteine-scanning mutagenesis approach was directed to this segment. Introduction of cysteine residues into TM6 did not disturb basal or drug-stimulated ATPase activity per se. Under basal conditions the hydrophobic probe coumarin maleimide readily labeled all introduced cysteine residues, whereas the hydrophilic fluorescein maleimide only labeled residue Cys-343. The amphiphilic BODIPY-maleimide displayed a more complex labeling profile. The extent of labeling with coumarin maleimide did not vary during the catalytic cycle, whereas fluorescein maleimide labeling of F343C was lost after nucleotide binding or hydrolysis. BODIPY-maleimide labeling was markedly altered during the catalytic cycle and indicated that the adenosine 5'-(beta,gamma-imino)triphosphate-bound and ADP/vanadate-trapped intermediates were conformationally distinct. Our data are reconciled with a recent atomic scale model of P-gp and are consistent with a tilting of TM6 in response to nucleotide binding and ATP hydrolysis.