22 resultados para low-power arcjet

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wavelength-locking of a multiwavelength stabilized slotted Fabry-Perot (SFP) laser to a single-mode laser source is experimentally demonstrated. The SFP resonates at channels spaced by similar to 8 nm between 1510 and 1565 nm over a wide range of temperatures and drive currents. Under low-power (<- 20 dBm) external optical injection, wavelength-locking with a sidemode suppression ratio (SMSR) > 25 dB is achieved. A locking width of > 25 GHz and SMSR > 30 dB can be achieved for each locked wavelength channel at injection power > - 16 dBm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reported are observations and measurements of the inscription of fibre Bragg gratings in two different types of microstructured polymer optical fibre: few-moded and endlessly single mode. Contrary to FBG inscription in silica microstructured fibre, where high energy laser pulses are a prerequisite, we have successfully used a low power CW laser source operating at 325nm to produce 1-cm long gratings with a reflection peak at 1570 nm. Peak reflectivities of more than 10% have been observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An all-optical regenerative memory device using a single loop mirror and a semiconductor optical amplifier is experimentally demonstrated. This configuration has potential for a low power all-optical stable memory device with non-inverting characteristics where packets are stored by continuously injecting the regenerated data back into the loop.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For the first time we demonstrate simultaneous suppression of phase distortion on two independent 10.7 Gbit/s DPSK modulated signal wavelengths using semiconductor optical amplifiers, realizing a compact phase sensitive amplifier with low power consumption.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

IEEE 802.15.4 standard has been proposed for low power wireless personal area networks. It can be used as an important component in machine to machine (M2M) networks for data collection, monitoring and controlling functions. With an increasing number of machine devices enabled by M2M technology and equipped with 802.15.4 radios, it is likely that multiple 802.15.4 networks may be deployed closely, for example, to collect data for smart metering at residential or enterprise areas. In such scenarios, supporting reliable communications for monitoring and controlling applications is a big challenge. The problem becomes more severe due to the potential hidden terminals when the operations of multiple 802.15.4 networks are uncoordinated. In this paper, we investigate this problem from three typical scenarios and propose an analytic model to reveal how performance of coexisting 802.15.4 networks may be affected by uncoordinated operations under these scenarios. Simulations will be used to validate the analytic model. It is observed that uncoordinated operations may lead to a significant degradation of system performance in M2M applications. With the proposed analytic model, we also investigate the performance limits of the 802.15.4 networks, and the conditions under which coordinated operations may be required to support M2M applications. © 2012 Springer Science + Business Media, LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

IEEE 802.15.4 standard is a relatively new standard designed for low power low data rate wireless sensor networks (WSN), which has a wide range of applications, e.g., environment monitoring, e-health, home and industry automation. In this paper, we investigate the problems of hidden devices in coverage overlapped IEEE 802.15.4 WSNs, which is likely to arise when multiple 802.15.4 WSNs are deployed closely and independently. We consider a typical scenario of two 802.15.4 WSNs with partial coverage overlapping and propose a Markov-chain based analytical model to reveal the performance degradation due to the hidden devices from the coverage overlapping. Impacts of the hidden devices and network sleeping modes on saturated throughput and energy consumption are modeled. The analytic model is verified by simulations, which can provide the insights to network design and planning when multiple 802.15.4 WSNs are deployed closely. © 2013 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

IEEE 802.15.4 standard has been recently developed for low power wireless personal area networks. It can find many applications for smart grid, such as data collection, monitoring and control functions. The performance of 802.15.4 networks has been widely studied in the literature. However the main focus has been on the modeling throughput performance with frame collisions. In this paper we propose an analytic model which can model the impact of frame collisions as well as frame corruptions due to channel bit errors. With this model the frame length can be carefully selected to improve system performance. The analytic model can also be used to study the 802.15.4 networks with interference from other co-located networks, such as IEEE 802.11 and Bluetooth networks. © 2011 Springer-Verlag.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

IEEE 802.15.4 networks (also known as ZigBee networks) has the features of low data rate and low power consumption. In this paper we propose an adaptive data transmission scheme which is based on CSMA/CA access control scheme, for applications which may have heavy traffic loads such as smart grids. In the proposed scheme, the personal area network (PAN) coordinator will adaptively broadcast a frame length threshold, which is used by the sensors to make decision whether a data frame should be transmitted directly to the target destinations, or follow a short data request frame. If the data frame is long and prone to collision, use of a short data request frame can efficiently reduce the costs of the potential collision on the energy and bandwidth. Simulation results demonstrate the effectiveness of the proposed scheme with largely improve bandwidth and power efficiency. © 2011 Springer-Verlag.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The issues involved in employing nonlinear optical loop mirrors (NOLMs) as intensity filters in picosecond soliton transmission were examined in detail. It was shown that inserting NOLMs into a periodically amplified transmission line allowed picosecond solitons to be transmitted under conditions considered infeasible until now. The loop mirrors gave dual function, removing low-power background dispersive waves through saturable absorption and applying a negative feedback mechanism to control the amplitude of the solitons. The stochastic characteristics of the pulses that were due to amplifier spontaneous-emission noise were investigated, and a number of new properties were determined. In addition, the mutual interaction between pulses was also significantly different from that observed for longer-duration solitons. The impact of Raman scattering in the computations was included and it was shown that soliton self-frequency shifts may be eliminated by appropriate bandwidth restrictions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the features of low-power and flexible networking capabilities IEEE 802.15.4 has been widely regarded as one strong candidate of communication technologies for wireless sensor networks (WSNs). It is expected that with an increasing number of deployments of 802.15.4 based WSNs, multiple WSNs could coexist with full or partial overlap in residential or enterprise areas. As WSNs are usually deployed without coordination, the communication could meet significant degradation with the 802.15.4 channel access scheme, which has a large impact on system performance. In this thesis we are motivated to investigate the effectiveness of 802.15.4 networks supporting WSN applications with various environments, especially when hidden terminals are presented due to the uncoordinated coexistence problem. Both analytical models and system level simulators are developed to analyse the performance of the random access scheme specified by IEEE 802.15.4 medium access control (MAC) standard for several network scenarios. The first part of the thesis investigates the effectiveness of single 802.15.4 network supporting WSN applications. A Markov chain based analytic model is applied to model the MAC behaviour of IEEE 802.15.4 standard and a discrete event simulator is also developed to analyse the performance and verify the proposed analytical model. It is observed that 802.15.4 networks could sufficiently support most WSN applications with its various functionalities. After the investigation of single network, the uncoordinated coexistence problem of multiple 802.15.4 networks deployed with communication range fully or partially overlapped are investigated in the next part of the thesis. Both nonsleep and sleep modes are investigated with different channel conditions by analytic and simulation methods to obtain the comprehensive performance evaluation. It is found that the uncoordinated coexistence problem can significantly degrade the performance of 802.15.4 networks, which is unlikely to satisfy the QoS requirements for many WSN applications. The proposed analytic model is validated by simulations which could be used to obtain the optimal parameter setting before WSNs deployments to eliminate the interference risks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

IEEE 802.15.4 standard is a relatively new standard designed for low power low data rate wireless sensor networks (WSN), which has a wide range of applications, e.g., environment monitoring, e-health, home and industry automation. In this paper, we investigate the problems of hidden devices in coverage overlapped IEEE 802.15.4 WSNs, which is likely to arise when multiple 802.15.4 WSNs are deployed closely and independently. We consider a typical scenario of two 802.15.4 WSNs with partial coverage overlapping and propose a Markov-chain based analytical model to reveal the performance degradation due to the hidden devices from the coverage overlapping. Impacts of the hidden devices and network sleeping modes on saturated throughput and energy consumption are modeled. The analytic model is verified by simulations, which can provide the insights to network design and planning when multiple 802.15.4 WSNs are deployed closely. © 2013 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report observations and measurements of the inscription of fiber Bragg gratings (FBGs) in two different types of microstructured polymer optical fiber: few-mode and an endlessly single mode. Contrary to the FBG inscription in silica microstructured fiber, where high-energy laser pulses are a prerequisite, we have successfully used a low-power cw laser source operating at 325 nm to produce 1 cm long gratings with a reflection peak at 1570 nm. Peak reflectivities of more than 10% have been observed. © 2005 Optical Society of America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

IEEE 802.15.4 networks has the features of low data rate and low power consumption. It is a strong candidate technique for wireless sensor networks and can find many applications to smart grid. However, due to the low network and energy capacities it is critical to maximize the bandwidth and energy efficiencies of 802.15.4 networks. In this paper we propose an adaptive data transmission scheme with CSMA/CA access control, for applications which may have heavy traffic loads such as smart grids. The adaptive access control is simple to implement. Its compatibility with legacy 802.15.4 devices can be maintained. Simulation results demonstrate the effectiveness of the proposed scheme with largely improved bandwidth and power efficiency. © 2013 International Information Institute.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For the first time we demonstrate simultaneous suppression of phase distortion on two independent 10.7 Gbit/s DPSK modulated signal wavelengths using semiconductor optical amplifiers, realizing a compact phase sensitive amplifier with low power consumption.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Long term recording of biomedical signals such as ECG, EMG, respiration and other information (e.g. body motion) can improve diagnosis and potentially monitor the evolution of many widespread diseases. However, long term monitoring requires specific solutions, portable and wearable equipment that should be particularly comfortable for patients. The key-issues of portable biomedical instrumentation are: power consumption, long-term sensor stability, comfortable wearing and wireless connectivity. In this scenario, it would be valuable to realize prototypes using available technologies to assess long-term personal monitoring and foster new ways to provide healthcare services. The aim of this work is to discuss the advantages and the drawbacks in long term monitoring of biopotentials and body movements using textile electrodes embedded in clothes. The textile electrodes were embedded into garments; tiny shirt and short were used to acquire electrocardiographic and electromyographic signals. The garment was equipped with low power electronics for signal acquisition and data wireless transmission via Bluetooth. A small, battery powered, biopotential amplifier and three-axes acceleration body monitor was realized. Patient monitor incorporates a microcontroller, analog-to-digital signal conversion at programmable sampling frequencies. The system was able to acquire and to transmit real-time signals, within 10 m range, to any Bluetooth device (including PDA or cellular phone). The electronics were embedded in the shirt resulting comfortable to wear for patients. Small size MEMS 3-axes accelerometers were also integrated. © 2011 IEEE.