44 resultados para low-dimensional system
em Aston University Research Archive
Resumo:
Recent theoretical investigations have demonstrated that the stability of mode-locked solutions of multiple frequency channels depends on the degree of inhomogeneity in gain saturation. In this article, these results are generalized to determine conditions on each of the system parameters necessary for both the stability and the existence of mode-locked pulse solutions for an arbitrary number of frequency channels. In particular, we find that the parameters governing saturable intensity discrimination and gain inhomogeneity in the laser cavity also determine the position of bifurcations of solution types. These bifurcations are completely characterized in terms of these parameters. In addition to influencing the stability of mode-locked solutions, we determine a balance between cubic gain and quintic loss, which is necessary for the existence of solutions as well. Furthermore, we determine the critical degree of inhomogeneous gain broadening required to support pulses in multiple-frequency channels. © 2010 The American Physical Society.
Resumo:
Hierarchical visualization systems are desirable because a single two-dimensional visualization plot may not be sufficient to capture all of the interesting aspects of complex high-dimensional data sets. We extend an existing locally linear hierarchical visualization system PhiVis [1] in several directions: bf(1) we allow for em non-linear projection manifolds (the basic building block is the Generative Topographic Mapping -- GTM), bf(2) we introduce a general formulation of hierarchical probabilistic models consisting of local probabilistic models organized in a hierarchical tree, bf(3) we describe folding patterns of low-dimensional projection manifold in high-dimensional data space by computing and visualizing the manifold's local directional curvatures. Quantities such as magnification factors [3] and directional curvatures are helpful for understanding the layout of the nonlinear projection manifold in the data space and for further refinement of the hierarchical visualization plot. Like PhiVis, our system is statistically principled and is built interactively in a top-down fashion using the EM algorithm. We demonstrate the visualization system principle of the approach on a complex 12-dimensional data set and mention possible applications in the pharmaceutical industry.
Resumo:
An exact formula for the transmission time in a disordered nonlinear soliton-bearing classical one-dimensional system is obtained.
Resumo:
This thesis was focused on theoretical models of synchronization to cortical dynamics as measured by magnetoencephalography (MEG). Dynamical systems theory was used in both identifying relevant variables for brain coordination and also in devising methods for their quantification. We presented a method for studying interactions of linear and chaotic neuronal sources using MEG beamforming techniques. We showed that such sources can be accurately reconstructed in terms of their location, temporal dynamics and possible interactions. Synchronization in low-dimensional nonlinear systems was studied to explore specific correlates of functional integration and segregation. In the case of interacting dissimilar systems, relevant coordination phenomena involved generalized and phase synchronization, which were often intermittent. Spatially-extended systems were then studied. For locally-coupled dissimilar systems, as in the case of cortical columns, clustering behaviour occurred. Synchronized clusters emerged at different frequencies and their boundaries were marked through oscillation death. The macroscopic mean field revealed sharp spectral peaks at the frequencies of the clusters and broader spectral drops at their boundaries. These results question existing models of Event Related Synchronization and Desynchronization. We re-examined the concept of the steady-state evoked response following an AM stimulus. We showed that very little variability in the AM following response could be accounted by system noise. We presented a methodology for detecting local and global nonlinear interactions from MEG data in order to account for residual variability. We found crosshemispheric nonlinear interactions of ongoing cortical rhythms concurrent with the stimulus and interactions of these rhythms with the following AM responses. Finally, we hypothesized that holistic spatial stimuli would be accompanied by the emergence of clusters in primary visual cortex resulting in frequency-specific MEG oscillations. Indeed, we found different frequency distributions in induced gamma oscillations for different spatial stimuli, which was suggestive of temporal coding of these spatial stimuli. Further, we addressed the bursting character of these oscillations, which was suggestive of intermittent nonlinear dynamics. However, we did not observe the characteristic-3/2 power-law scaling in the distribution of interburst intervals. Further, this distribution was only seldom significantly different to the one obtained in surrogate data, where nonlinear structure was destroyed. In conclusion, the work presented in this thesis suggests that advances in dynamical systems theory in conjunction with developments in magnetoencephalography may facilitate a mapping between levels of description int he brain. this may potentially represent a major advancement in neuroscience.
Resumo:
The simulated classical dynamics of a small molecule exhibiting self-organizing behavior via a fast transition between two states is analyzed by calculation of the statistical complexity of the system. It is shown that the complexity of molecular descriptors such as atom coordinates and dihedral angles have different values before and after the transition. This provides a new tool to identify metastable states during molecular self-organization. The highly concerted collective motion of the molecule is revealed. Low-dimensional subspaces dynamics is found sensitive to the processes in the whole, high-dimensional phase space of the system. © 2004 Wiley Periodicals, Inc.
Resumo:
This thesis describes the Generative Topographic Mapping (GTM) --- a non-linear latent variable model, intended for modelling continuous, intrinsically low-dimensional probability distributions, embedded in high-dimensional spaces. It can be seen as a non-linear form of principal component analysis or factor analysis. It also provides a principled alternative to the self-organizing map --- a widely established neural network model for unsupervised learning --- resolving many of its associated theoretical problems. An important, potential application of the GTM is visualization of high-dimensional data. Since the GTM is non-linear, the relationship between data and its visual representation may be far from trivial, but a better understanding of this relationship can be gained by computing the so-called magnification factor. In essence, the magnification factor relates the distances between data points, as they appear when visualized, to the actual distances between those data points. There are two principal limitations of the basic GTM model. The computational effort required will grow exponentially with the intrinsic dimensionality of the density model. However, if the intended application is visualization, this will typically not be a problem. The other limitation is the inherent structure of the GTM, which makes it most suitable for modelling moderately curved probability distributions of approximately rectangular shape. When the target distribution is very different to that, theaim of maintaining an `interpretable' structure, suitable for visualizing data, may come in conflict with the aim of providing a good density model. The fact that the GTM is a probabilistic model means that results from probability theory and statistics can be used to address problems such as model complexity. Furthermore, this framework provides solid ground for extending the GTM to wider contexts than that of this thesis.
Resumo:
We have recently proposed the framework of independent blind source separation as an advantageous approach to steganography. Amongst the several characteristics noted was a sensitivity to message reconstruction due to small perturbations in the sources. This characteristic is not common in most other approaches to steganography. In this paper we discuss how this sensitivity relates the joint diagonalisation inside the independent component approach, and reliance on exact knowledge of secret information, and how it can be used as an additional and inherent security mechanism against malicious attack to discovery of the hidden messages. The paper therefore provides an enhanced mechanism that can be used for e-document forensic analysis and can be applied to different dimensionality digital data media. In this paper we use a low dimensional example of biomedical time series as might occur in the electronic patient health record, where protection of the private patient information is paramount.
Resumo:
We present a thorough study on the development of a polymer optical fibre-based tuneable filter utilizing an intra-core Bragg grating that is electrically tuneable, operating at 1.55 µm. The Bragg grating is made tuneable using a thin-film resistive heater deposited on the surface of the fibre. The polymer fibre was coated via the photochemical deposition of a Pd/Cu metallic layer with the procedure induced by VUV radiation at room temperature. The resulting device, when wavelength tuned via Joule heating, underwent a wavelength shift of 2 nm for a moderate input power of 160 mW, a wavelength to input power coefficient of -13.4 pm mW-1 and time constant of 1.7 s-1. A basic theoretical study verified that for this fibre type one can treat the device as a one-dimensional system. The model was extended to include the effect of input electrical power changes on the refractive index of the fibre and subsequently to changes in the Bragg wavelength of the grating, showing excellent agreement with the experimental measurements.
Resumo:
This thesis addresses the problem of information hiding in low dimensional digital data focussing on issues of privacy and security in Electronic Patient Health Records (EPHRs). The thesis proposes a new security protocol based on data hiding techniques for EPHRs. This thesis contends that embedding of sensitive patient information inside the EPHR is the most appropriate solution currently available to resolve the issues of security in EPHRs. Watermarking techniques are applied to one-dimensional time series data such as the electroencephalogram (EEG) to show that they add a level of confidence (in terms of privacy and security) in an individual’s diverse bio-profile (the digital fingerprint of an individual’s medical history), ensure belief that the data being analysed does indeed belong to the correct person, and also that it is not being accessed by unauthorised personnel. Embedding information inside single channel biomedical time series data is more difficult than the standard application for images due to the reduced redundancy. A data hiding approach which has an in built capability to protect against illegal data snooping is developed. The capability of this secure method is enhanced by embedding not just a single message but multiple messages into an example one-dimensional EEG signal. Embedding multiple messages of similar characteristics, for example identities of clinicians accessing the medical record helps in creating a log of access while embedding multiple messages of dissimilar characteristics into an EPHR enhances confidence in the use of the EPHR. The novel method of embedding multiple messages of both similar and dissimilar characteristics into a single channel EEG demonstrated in this thesis shows how this embedding of data boosts the implementation and use of the EPHR securely.
Resumo:
This thesis is a study of low-dimensional visualisation methods for data visualisation under certainty of the input data. It focuses on the two main feed-forward neural network algorithms which are NeuroScale and Generative Topographic Mapping (GTM) by trying to make both algorithms able to accommodate the uncertainty. The two models are shown not to work well under high levels of noise within the data and need to be modified. The modification of both models, NeuroScale and GTM, are verified by using synthetic data to show their ability to accommodate the noise. The thesis is interested in the controversy surrounding the non-uniqueness of predictive gene lists (PGL) of predicting prognosis outcome of breast cancer patients as available in DNA microarray experiments. Many of these studies have ignored the uncertainty issue resulting in random correlations of sparse model selection in high dimensional spaces. The visualisation techniques are used to confirm that the patients involved in such medical studies are intrinsically unclassifiable on the basis of provided PGL evidence. This additional category of ‘unclassifiable’ should be accommodated within medical decision support systems if serious errors and unnecessary adjuvant therapy are to be avoided.
Resumo:
An alkali- and nitrate-free hydrotalcite coating has been grafted onto the surface of a hierarchically ordered macroporous-mesoporous SBA-15 template via stepwise growth of conformal alumina adlayers and their subsequent reaction with magnesium methoxide. The resulting low dimensional hydrotalcite crystallites exhibit excellent per site activity for the base catalysed transesterification of glyceryl triolein with methanol for FAME production.
Resumo:
We present a thorough study on the development of a polymer optical fibre-based tuneable filter utilizing an intra-core Bragg grating that is electrically tuneable, operating at 1.55 νm. The Bragg grating is made tuneable using a thin-film resistive heater deposited on the surface of the fibre. The polymer fibre was coated via the photochemical deposition of a Pd/Cu metallic layer with the procedure induced by VUV radiation at room temperature. The resulting device, when wavelength tuned via Joule heating, underwent a wavelength shift of 2 nm for a moderate input power of 160 mW, a wavelength to input power coefficient of -13.4 pm mW-1 and time constant of 1.7 s-1. A basic theoretical study verified that for this fibre type one can treat the device as a one-dimensional system. The model was extended to include the effect of input electrical power changes on the refractive index of the fibre and subsequently to changes in the Bragg wavelength of the grating, showing excellent agreement with the experimental measurements. © 2007 IOP Publishing Ltd.
Resumo:
Protein-DNA interactions are an essential feature in the genetic activities of life, and the ability to predict and manipulate such interactions has applications in a wide range of fields. This Thesis presents the methods of modelling the properties of protein-DNA interactions. In particular, it investigates the methods of visualising and predicting the specificity of DNA-binding Cys2His2 zinc finger interaction. The Cys2His2 zinc finger proteins interact via their individual fingers to base pair subsites on the target DNA. Four key residue positions on the a- helix of the zinc fingers make non-covalent interactions with the DNA with sequence specificity. Mutating these key residues generates combinatorial possibilities that could potentially bind to any DNA segment of interest. Many attempts have been made to predict the binding interaction using structural and chemical information, but with only limited success. The most important contribution of the thesis is that the developed model allows for the binding properties of a given protein-DNA binding to be visualised in relation to other protein-DNA combinations without having to explicitly physically model the specific protein molecule and specific DNA sequence. To prove this, various databases were generated, including a synthetic database which includes all possible combinations of the DNA-binding Cys2His2 zinc finger interactions. NeuroScale, a topographic visualisation technique, is exploited to represent the geometric structures of the protein-DNA interactions by measuring dissimilarity between the data points. In order to verify the effect of visualisation on understanding the binding properties of the DNA-binding Cys2His2 zinc finger interaction, various prediction models are constructed by using both the high dimensional original data and the represented data in low dimensional feature space. Finally, novel data sets are studied through the selected visualisation models based on the experimental DNA-zinc finger protein database. The result of the NeuroScale projection shows that different dissimilarity representations give distinctive structural groupings, but clustering in biologically-interesting ways. This method can be used to forecast the physiochemical properties of the novel proteins which may be beneficial for therapeutic purposes involving genome targeting in general.
Resumo:
This paper examines a method for locating within a scene a distribution of an absorbing gas using a passive imaging technique. An oscillatory modulation of the angle of a narrowband dielectric filter located in front of a camera imaging a scene, gives rise to an intensity modulation that differs in regions occupied by the absorbing gas. A preliminary low cost system has been constructed from readily available components which demonstrates how the location of gas within a scene can be implemented. Modelling of the system has been carried out, especially highlighting the transmission effects of the dielectric filter upon different regions of the image.
Resumo:
The problem of strongly correlated electrons in one dimension attracted attention of condensed matter physicists since early 50’s. After the seminal paper of Tomonaga [1] who suggested the first soluble model in 1950, there were essential achievements reflected in papers by Luttinger [2] (1963) and Mattis and Lieb [3] (1963). A considerable contribution to the understanding of generic properties of the 1D electron liquid has been made by Dzyaloshinskii and Larkin [4] (1973) and Efetov and Larkin [5] (1976). Despite the fact that the main features of the 1D electron liquid were captured and described by the end of 70’s, the investigators felt dissatisfied with the rigour of the theoretical description. The most famous example is the paper by Haldane [6] (1981) where the author developed the fundamentals of a modern bosonisation technique, known as the operator approach. This paper became famous because the author has rigourously shown how to construct the Fermi creation/anihilation operators out of the Bose ones. The most recent example of such a dissatisfaction is the review by von Delft and Schoeller [7] (1998) who revised the approach to the bosonisation and came up with what they called constructive bosonisation.