16 resultados para low temperature treatment
em Aston University Research Archive
Resumo:
We studied the effects of the composition of impregnating solution and heat treatment conditions on the activity of catalytic systems for the low-temperature oxidation of CO obtained by the impregnation of Busofit carbon-fiber cloth with aqueous solutions of palladium, copper, and iron salts. The formation of an active phase in the synthesized catalysts at different stages of their preparation was examined with the use of differential thermal and thermogravimetric analyses, X-ray diffraction analysis, X-ray photoelectron spectroscopy, and elemental spectral analysis. The catalytic system prepared by the impregnation of electrochemically treated Busofit with the solutions of PdCl, FeCl, CuBr, and Cu(NO ) and activated under optimum conditions ensured 100% CO conversion under a respiratory regime at both low (0.03%) and high (0.5%) carbon monoxide contents of air. It was found that the activation of a catalytic system at elevated temperatures (170-180°C) leads to the conversion of Pd(II) into Pd(I), which was predominantly localized in a near-surface layer. The promoting action of copper nitrate consists in the formation of a crystalline phase of the rhombic atacamite CuCl(OH). The catalyst surface is finally formed under the conditions of a catalytic reaction, when a joint Pd(I)-Cu(I) active site is formed. © 2014 Pleiades Publishing, Ltd.
Resumo:
New heterogenized catalytic systems for the low-temperature oxidation of CO were synthesized by supporting solutions of Pd, Cu, and Fe salts on carbon fibrous materials (carbopon and busofit). The carbon supports were studied by elemental analysis, SEM, TGA, and TPD. The effects of the nature of the support, the concentration and composition of the active component, and the conditions of preparation on the efficiency of the catalytic system were studied. It was ascertained that attenuation of hydrophilic properties of the support led to the decrease in system activity. The investigation of the catalysts by XPS showed that sample treatment in the reaction medium results in redistribution of the components of the active phase in the near-surface layer of the catalyst. The catalytic system based on carbon fibrous material carbopon prepared by supporting active components (Pd, Cu, and Fe salts) in three stages with intermediate activation in the reaction medium ensures 95% conversion of CO under respiratory conditions, and is promising for the design of the main element of breathing masks on its basis.
Resumo:
Groundwater salinity is a widespread problem that contributes to the freshwater deficit of humanity. Consequently, where conventional energy supply is also lacking, organic Rankine cycle (ORC) engines are being considered as a feasible option to harness readily available low-grade heat (<180°C) to drive the desalination of the saline water via reverse osmosis (RO). However, this application is still not very well developed, and has significantly high specific energy consumption (SEC). Hence, this study explores the isothermal expansion of the ORC working fluid to achieve improved efficiency for driving a batch-RO desalination process, "DesaLink". Here, the working fluid is directly vaporized in the expansion cylinder which is heated externally by heat transfer fluid, thus obviating the need for a separate external boiler and high-pressure piping. Experimental investigations with R245fa have shown cycle efficiency of 8.8%. And it is predicted that the engine could drive DesaLink to produce 256 L of freshwater per 8 h per day, from 4000 ppm saline water, with a thermal and mechanical SEC of 2.5 and 0.36 kWh/m3, respectively, representing a significant improvement on previously reported or predicted SEC values. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.
Resumo:
We introduce models of heterogeneous systems with finite connectivity defined on random graphs to capture finite-coordination effects on the low-temperature behaviour of finite-dimensional systems. Our models use a description in terms of small deviations of particle coordinates from a set of reference positions, particularly appropriate for the description of low-temperature phenomena. A Born-von Karman-type expansion with random coefficients is used to model effects of frozen heterogeneities. The key quantity appearing in the theoretical description is a full distribution of effective single-site potentials which needs to be determined self-consistently. If microscopic interactions are harmonic, the effective single-site potentials turn out to be harmonic as well, and the distribution of these single-site potentials is equivalent to a distribution of localization lengths used earlier in the description of chemical gels. For structural glasses characterized by frustration and anharmonicities in the microscopic interactions, the distribution of single-site potentials involves anharmonicities of all orders, and both single-well and double-well potentials are observed, the latter with a broad spectrum of barrier heights. The appearance of glassy phases at low temperatures is marked by the appearance of asymmetries in the distribution of single-site potentials, as previously observed for fully connected systems. Double-well potentials with a broad spectrum of barrier heights and asymmetries would give rise to the well-known universal glassy low-temperature anomalies when quantum effects are taken into account. © 2007 IOP Publishing Ltd.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Aim of the work is the implementation of a low temperature reforming (LT reforming) unit downstream the Haloclean pyrolyser in order to enhance the heating value of the pyrolysis gas. Outside the focus of this work was to gain a synthesis gas quality for further use. Temperatures between 400 °C and 500 °C were applied. A commercial pre-reforming catalyst on a nickel basis from Südchemie was chosen for LT reforming. As biogenic feedstock wheat straw has been used. Pyrolysis of wheat straw at 450 °C by means of Haloclean pyrolysis leads to 28% of char, 50% of condensate and 22% of gas. The condensate separates in a water phase and an organic phase. The organic phase is liquid, but contains viscous compounds. These compounds could underlay aging and could lead to solid tars which can cause post processing problems. Therefore, the implementation of a catalytic reformer is not only of interest from an energetic point of view, it is generally interesting for tar conversion purposes after pyrolysis applications. By using a fixed bed reforming unit at 450–490 °C and space velocities about 3000 l/h the pyrolysis gas volume flow could be increased to about 58%. This corresponds to a decrease of the yields of condensates by means of catalysis up to 17%, the yield of char remains unchanged, since pyrolysis conditions are the same. The heating value in the pyrolysis gas could be increased by the factor of 1.64. Hydrogen concentrations up to 14% could be realised.
Resumo:
Haloclean a performance enhanced low temperature pyrolysis for biomass developed by Forschungszentrum Karlsruhe and Sea Marconi Is closing the gap between classical and fast pyrolysis approaches. For pyrolysis of straw (chaffed-, finely ground and pellets) temperature ranges between 320 to 420°C and residence times of only 1 to 5 minutes can be realized. Liquid yields of up to 45 wt-% and 35 wt-% of solids are possible. Solid yields can be increased up to 73 wt-% while loosing 4.5 % of the feed energy by pyrolysis gases only. Toxicity tests of the fractions do not show relevant numbers.
Resumo:
We have found an exact expression for the decoherence rate of a Josephson charge qubit coupled to fluctuating background charges. At low temperatures T the decoherence rate Γ is linear in T while at high temperatures it saturates in agreement with a known classical solution which, however, reached at surprisingly high T. In contrast to the classical picture, impurity states spread in a wide interval of energies (> T) may essentially contribute to Γ.
Resumo:
Catalytic systems containing palladium, copper, and iron compounds on carbon supports-kernel activated carbon and fibrous carbon materials (Karbopon and Busofit)-for the low-temperature oxidation of CO were synthesized. The effects of the nature of the support, the concentration and composition of the active component, and the conditions of preparation on the efficiency of the catalytic system were studied. The catalytic system based on Karbopon exhibited the highest activity: the conversion of carbon monoxide was 90% at room temperature and a reaction mixture (0.03% CO in air) space velocity of 10 000 h. It was found that the metals occurred in oxidized states in the course of operation: palladium mainly occurred as Pd, whereas copper and iron occurred as Cu and Fe, respectively. © 2008 MAIK Nauka.
Resumo:
Fast X-ray photoelectron spectroscopy reveals that the efficient catalytic destruction of 1,1,1-trichloroethane occurs over Pt{111} surfaces at temperatures as low as 150 K. Decomposition occurs via rapid, sequential C-Cl bond scission to form an alkylidyne surface intermediate that in turn dehydrogenates above room temperature. Atomic chlorine liberated during dehydrochlorination undergoes efficient reaction with surface hydrogen, resulting in the evolution of gaseous HCl and small amounts of ethane, presumably via ethylidyne hydrogenation. Irreversible dehydrogenation of residual hydrocarbon fragments results in significant surface coking above 500 K.
Resumo:
Fast X-ray photoelectron spectroscopy reveals efficient C–Cl activation of 1,1,1-trichloroethane occurs over platinum surfaces at 150 K, and in the presence of hydrogen, sustained ambient temperature dehydrochlorination to HCl and ethane is possible over supported Pt/Al2O3 catalysts.
Resumo:
External combustion heat cycle engines convert thermal energy into useful work. Thermal energy resources include solar, geothermal, bioenergy, and waste heat. To harness these and maximize work output, there has been a renaissance of interest in the investigation of vapour power cycles for quasi-isothermal (near constant temperature) instead of adiabatic expansion. Quasi-isothermal expansion has the advantage of bringing the cycle efficiency closer to the ideal Carnot efficiency, but it requires heat to be transferred to the working fluid as it expands. This paper reviews various low-temperature vapour power cycle heat engines with quasi-isothermal expansion, including the methods employed to realize the heat transfer. The heat engines take the form of the Rankine cycle with continuous heat addition during the expansion process, or the Stirling cycle with a condensable vapour as working fluid. Compared to more standard Stirling engines using gas, the specific work output is higher. Cryogenic heat engines based on the Rankine cycle have also been enhanced with quasi-isothermal expansion. Liquid flooded expansion and expander surface heating are the two main heat transfer methods employed. Liquid flooded expansion has been applied mainly in rotary expanders, including scroll turbines; whereas surface heating has been applied mainly in reciprocating expanders. © 2014 Elsevier Ltd.
Resumo:
In brackish groundwater desalination, high recovery ratio (of fresh water from saline feed) is desired to minimise concentrate reject. To this effect, previous studies have developed a batch reverse osmosis (RO) desalination system, DesaLink, which proposed to expand steam in a reciprocating piston cylinder and transmit the driving force through a linkage crank mechanism to pressurise batches of saline water (recirculating) in a water piston cylinder unto RO membranes. However, steam is largely disadvantaged at operation from low temperature (< 150oC) thermal sources; and organic working fluids are more viable, though, the obtainable thermal cycle efficiencies are generally low with low temperatures. Consequently, this thesis proposed to investigate the use of organic working fluid Rankine cycle (ORC) with isothermal expansion, to drive the DesaLink machine, at improved thermal efficiency from low temperature thermal sources. Following a review of the methods of achieving isothermal expansion, ‘liquid flooded expansion’ and ‘expansion chamber surface heating’ were identified as potential alternative methods. Preliminary experimental comparative analysis of variants of the heated expansion chamber technique of effecting isothermal expansion favoured a heated plain wall technique, and as such was adopted for further optimisation and development. Further, an optimised isothermal ORC engine was built and tested at < 95oC heat source temperature, with R245fa working fluid – which was selected from 16 working fluids that were analysed for isothermal operation. Upon satisfactory performance of the test engine, a larger (10 times) version was built and coupled to drive the DesaLink system. Operating the integrated ORC-RO DesaLink system, gave freshwater (approximately 500 ppm) production of about 12 litres per hour (from 4000 ppm feed water) at a recovery ratio of about 0.7 and specific energy consumption of 0.34 kWh/m3; and at a thermal efficiency of 7.7%. Theoretical models characterising the operation and performance of the integrated system was developed and utilised to access the potential field performance of the system, when powered by two different thermal energy sources – solar and industrial bakery waste heat – as case studies.
Resumo:
Biological detergents are now routinely used in domestic laundry because the enzymes they contain provide the added benefit of low temperature washes with improved cleaning performance. One of the key enzymes found in these detergents are proteases, which if exposed to natural protein fibres such as wool or silk can cause irreversible damage, leading to loss of fabric strength, shape and poor colour fastness. Transglutaminases (TGases) are protein cross-linking enzymes capable of adding tensile strength to wool proteins, and as a consequence are capable of remediating the damage caused by previous chemical treatments, and more importantly, by proteases. In this paper we treated dyed wool fabric with TGase and then washed the fabric with biological and non-biological detergents to investigate whether TGases would protect wool garments from damage by the undue use of biological detergents in domestic laundry. We demonstrate using different cycles of detergent washes containing biological and non-biological detergents and different TGase treatments, that wool fabric treated previously with TGase release less dye into the washing liquor and in addition maintain fabric strength at levels greater than the washed controls. As a consequence, wool garments previously treated with TGase are likely to have increased resistance to domestic washing and thus provide increased longevity. © 2005 Elsevier B.V. All rights reserved.