17 resultados para log-linear models

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of regression under Gaussian assumptions is treated generally. The relationship between Bayesian prediction, regularization and smoothing is elucidated. The ideal regression is the posterior mean and its computation scales as O(n3), where n is the sample size. We show that the optimal m-dimensional linear model under a given prior is spanned by the first m eigenfunctions of a covariance operator, which is a trace-class operator. This is an infinite dimensional analogue of principal component analysis. The importance of Hilbert space methods to practical statistics is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linear models reach their limitations in applications with nonlinearities in the data. In this paper new empirical evidence is provided on the relative Euro inflation forecasting performance of linear and non-linear models. The well established and widely used univariate ARIMA and multivariate VAR models are used as linear forecasting models whereas neural networks (NN) are used as non-linear forecasting models. It is endeavoured to keep the level of subjectivity in the NN building process to a minimum in an attempt to exploit the full potentials of the NN. It is also investigated whether the historically poor performance of the theoretically superior measure of the monetary services flow, Divisia, relative to the traditional Simple Sum measure could be attributed to a certain extent to the evaluation of these indices within a linear framework. Results obtained suggest that non-linear models provide better within-sample and out-of-sample forecasts and linear models are simply a subset of them. The Divisia index also outperforms the Simple Sum index when evaluated in a non-linear framework. © 2005 Taylor & Francis Group Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background - The binding between peptide epitopes and major histocompatibility complex proteins (MHCs) is an important event in the cellular immune response. Accurate prediction of the binding between short peptides and the MHC molecules has long been a principal challenge for immunoinformatics. Recently, the modeling of MHC-peptide binding has come to emphasize quantitative predictions: instead of categorizing peptides as "binders" or "non-binders" or as "strong binders" and "weak binders", recent methods seek to make predictions about precise binding affinities. Results - We developed a quantitative support vector machine regression (SVR) approach, called SVRMHC, to model peptide-MHC binding affinities. As a non-linear method, SVRMHC was able to generate models that out-performed existing linear models, such as the "additive method". By adopting a new "11-factor encoding" scheme, SVRMHC takes into account similarities in the physicochemical properties of the amino acids constituting the input peptides. When applied to MHC-peptide binding data for three mouse class I MHC alleles, the SVRMHC models produced more accurate predictions than those produced previously. Furthermore, comparisons based on Receiver Operating Characteristic (ROC) analysis indicated that SVRMHC was able to out-perform several prominent methods in identifying strongly binding peptides. Conclusion - As a method with demonstrated performance in the quantitative modeling of MHC-peptide binding and in identifying strong binders, SVRMHC is a promising immunoinformatics tool with not inconsiderable future potential.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is well known that one of the obstacles to effective forecasting of exchange rates is heteroscedasticity (non-stationary conditional variance). The autoregressive conditional heteroscedastic (ARCH) model and its variants have been used to estimate a time dependent variance for many financial time series. However, such models are essentially linear in form and we can ask whether a non-linear model for variance can improve results just as non-linear models (such as neural networks) for the mean have done. In this paper we consider two neural network models for variance estimation. Mixture Density Networks (Bishop 1994, Nix and Weigend 1994) combine a Multi-Layer Perceptron (MLP) and a mixture model to estimate the conditional data density. They are trained using a maximum likelihood approach. However, it is known that maximum likelihood estimates are biased and lead to a systematic under-estimate of variance. More recently, a Bayesian approach to parameter estimation has been developed (Bishop and Qazaz 1996) that shows promise in removing the maximum likelihood bias. However, up to now, this model has not been used for time series prediction. Here we compare these algorithms with two other models to provide benchmark results: a linear model (from the ARIMA family), and a conventional neural network trained with a sum-of-squares error function (which estimates the conditional mean of the time series with a constant variance noise model). This comparison is carried out on daily exchange rate data for five currencies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The generative topographic mapping (GTM) model was introduced by Bishop et al. (1998, Neural Comput. 10(1), 215-234) as a probabilistic re- formulation of the self-organizing map (SOM). It offers a number of advantages compared with the standard SOM, and has already been used in a variety of applications. In this paper we report on several extensions of the GTM, including an incremental version of the EM algorithm for estimating the model parameters, the use of local subspace models, extensions to mixed discrete and continuous data, semi-linear models which permit the use of high-dimensional manifolds whilst avoiding computational intractability, Bayesian inference applied to hyper-parameters, and an alternative framework for the GTM based on Gaussian processes. All of these developments directly exploit the probabilistic structure of the GTM, thereby allowing the underlying modelling assumptions to be made explicit. They also highlight the advantages of adopting a consistent probabilistic framework for the formulation of pattern recognition algorithms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Radial Basis Function networks with linear outputs are often used in regression problems because they can be substantially faster to train than Multi-layer Perceptrons. For classification problems, the use of linear outputs is less appropriate as the outputs are not guaranteed to represent probabilities. In this paper we show how RBFs with logistic and softmax outputs can be trained efficiently using algorithms derived from Generalised Linear Models. This approach is compared with standard non-linear optimisation algorithms on a number of datasets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The data available during the drug discovery process is vast in amount and diverse in nature. To gain useful information from such data, an effective visualisation tool is required. To provide better visualisation facilities to the domain experts (screening scientist, biologist, chemist, etc.),we developed a software which is based on recently developed principled visualisation algorithms such as Generative Topographic Mapping (GTM) and Hierarchical Generative Topographic Mapping (HGTM). The software also supports conventional visualisation techniques such as Principal Component Analysis, NeuroScale, PhiVis, and Locally Linear Embedding (LLE). The software also provides global and local regression facilities . It supports regression algorithms such as Multilayer Perceptron (MLP), Radial Basis Functions network (RBF), Generalised Linear Models (GLM), Mixture of Experts (MoE), and newly developed Guided Mixture of Experts (GME). This user manual gives an overview of the purpose of the software tool, highlights some of the issues to be taken care while creating a new model, and provides information about how to install & use the tool. The user manual does not require the readers to have familiarity with the algorithms it implements. Basic computing skills are enough to operate the software.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

FDI plays a key role in development, particularly in resource-constrained transition economies of Central and Eastern Europe with relatively low savings rates. Gains from technology transfer play a critical role in motivating FDI, yet potential for it may be hampered by a large technology gap between the source and host country. While the extent of this gap has traditionally been attributed to education, skills and capital intensity, recent literature has also emphasized the possible role of institutional environment in this respect. Despite tremendous interest among policy-makers and academics to understand the factors attracting FDI (Bevan and Estrin, 2000; Globerman and Shapiro, 2003) our knowledge about the effects of institutions on the location choice and ownership structure of foreign firms remains limited. This paper attempts to fill this gap in the literature by examining the link between institutions and foreign ownership structures. To the best of our knowledge, Javorcik (2004) is the only papers, which use firm-level data to analyse the role of institutional quality on an outward investor’s entry mode in transition countries. Our paper extends Javorcik (2004) in a number of ways: (a) rather than a cross-section, we use panel data for the period 1997-2006; (b) rather than a binary variable, we use the percentage foreign ownership as continuous variable; (c) we consider multi-dimensional institutional variables, such as corruption, intellectual property rights protection and government stability. We also use factor analysis to generate a composite index of institutional quality and see how stronger institutional environment could affect foreign ownership; (d) we explore how the distance between institutional environment in source and host countries affect foreign ownership in a host country. The firm-level data used includes both domestic and foreign firms for the period 1997-2006 and is drawn from ORBIS, a commercially available dataset provided by Bureau van Dijk. In order to examine the link between institutions and foreign ownership structures, we estimate four log-linear ownership equations/specifications augmented by institutional and other control variables. We find evidence that the decision of a foreign firm to either locate its subsidiary or acquire an existing domestic firm depends not only on factor cost differences but also on differences in institutional environment between the host and source countries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis addresses data assimilation, which typically refers to the estimation of the state of a physical system given a model and observations, and its application to short-term precipitation forecasting. A general introduction to data assimilation is given, both from a deterministic and' stochastic point of view. Data assimilation algorithms are reviewed, in the static case (when no dynamics are involved), then in the dynamic case. A double experiment on two non-linear models, the Lorenz 63 and the Lorenz 96 models, is run and the comparative performance of the methods is discussed in terms of quality of the assimilation, robustness "in the non-linear regime and computational time. Following the general review and analysis, data assimilation is discussed in the particular context of very short-term rainfall forecasting (nowcasting) using radar images. An extended Bayesian precipitation nowcasting model is introduced. The model is stochastic in nature and relies on the spatial decomposition of the rainfall field into rain "cells". Radar observations are assimilated using a Variational Bayesian method in which the true posterior distribution of the parameters is approximated by a more tractable distribution. The motion of the cells is captured by a 20 Gaussian process. The model is tested on two precipitation events, the first dominated by convective showers, the second by precipitation fronts. Several deterministic and probabilistic validation methods are applied and the model is shown to retain reasonable prediction skill at up to 3 hours lead time. Extensions to the model are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we discuss some practical implications for implementing adaptable network algorithms applied to non-stationary time series problems. Two real world data sets, containing electricity load demands and foreign exchange market prices, are used to test several different methods, ranging from linear models with fixed parameters, to non-linear models which adapt both parameters and model order on-line. Training with the extended Kalman filter, we demonstrate that the dynamic model-order increment procedure of the resource allocating RBF network (RAN) is highly sensitive to the parameters of the novelty criterion. We investigate the use of system noise for increasing the plasticity of the Kalman filter training algorithm, and discuss the consequences for on-line model order selection. The results of our experiments show that there are advantages to be gained in tracking real world non-stationary data through the use of more complex adaptive models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Areolae of the crustose lichen Rhizocarpon geographicum (L.) DC., are present on the peripheral prothallus (marginal areolae) and also aggregate to form confluent masses in the centre of the thallus (central areolae). To determine the relationships between these areolae and whether growth of the peripheral prothallus is dependent on the marginal areolae, the density, morphology, and size frequency distributions of marginal areolae were measured in 23 thalli of R. geographicum in north Wales, UK using image analysis (Image J). Size and morphology of central areolae were also studied across the thallus. Marginal areolae were small, punctate, and occurred in clusters scattered over the peripheral prothallus while central areolae were larger and had a lobed structure. The size-class frequency distributions of the marginal and central areolae were fitted by power-law and log-normal models respectively. In 16 out of 23 thalli, central areolae close to the outer edge were larger and had a more complex lobed morphology than those towards the thallus centre. Neither mean width nor radial growth rate (RaGR) of the peripheral prothallus were correlated with density, diameter, or area fraction of marginal areolae. The data suggest central areolae may develop from marginal areolae as follows: (1) marginal areolae develop in clusters at the periphery and fuse to form central areolae, (2) central areolae grow exponentially, and (3) crowding of central areolae results in constriction and fragmentation. In addition, growth of the peripheral prothallus may be unrelated to the marginal areolae. © 2013 Springer Science+Business Media Dordrecht.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent investigations into cross-country convergence follow Mankiw, Romer, and Weil (1992) in using a log-linear approximation to the Swan-Solow growth model to specify regressions. These studies tend to assume a common and exogenous technology. In contrast, the technology catch-up literature endogenises the growth of technology. The use of capital stock data renders the approximations and over-identification of the Mankiw model unnecessary and enables us, using dynamic panel estimation, to estimate the separate contributions of diminishing returns and technology transfer to the rate of conditional convergence. We find that both effects are important.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents an effective decision making system for leak detection based on multiple generalized linear models and clustering techniques. The training data for the proposed decision system is obtained by setting up an experimental pipeline fully operational distribution system. The system is also equipped with data logging for three variables; namely, inlet pressure, outlet pressure, and outlet flow. The experimental setup is designed such that multi-operational conditions of the distribution system, including multi pressure and multi flow can be obtained. We then statistically tested and showed that pressure and flow variables can be used as signature of leak under the designed multi-operational conditions. It is then shown that the detection of leakages based on the training and testing of the proposed multi model decision system with pre data clustering, under multi operational conditions produces better recognition rates in comparison to the training based on the single model approach. This decision system is then equipped with the estimation of confidence limits and a method is proposed for using these confidence limits for obtaining more robust leakage recognition results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose weakly-constrained stream and block codes with tunable pattern-dependent statistics and demonstrate that the block code capacity at large block sizes is close to the the prediction obtained from a simple Markov model published earlier. We demonstrate the feasibility of the code by presenting original encoding and decoding algorithms with a complexity log-linear in the block size and with modest table memory requirements. We also show that when such codes are used for mitigation of patterning effects in optical fibre communications, a gain of about 0.5dB is possible under realistic conditions, at the expense of small redundancy 10%). © 2006 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose weakly-constrained stream and block codes with tunable pattern-dependent statistics and demonstrate that the block code capacity at large block sizes is close to the the prediction obtained from a simple Markov model published earlier. We demonstrate the feasibility of the code by presenting original encoding and decoding algorithms with a complexity log-linear in the block size and with modest table memory requirements. We also show that when such codes are used for mitigation of patterning effects in optical fibre communications, a gain of about 0.5dB is possible under realistic conditions, at the expense of small redundancy (≈10%). © 2010 IEEE