7 resultados para local image features

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The perception of global form requires integration of local visual cues across space and is the foundation for object recognition. Here we used magnetoencephalography (MEG) to study the location and time course of neuronal activity associated with the perception of global structure from local image features. To minimize neuronal activity to low-level stimulus properties, such as luminance and contrast, the local image features were held constant during all phases of the MEG recording. This allowed us to assess the relative importance of striate (V1) versus extrastriate cortex in global form perception.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the "Thatcher illusion" a face, in which the eyes and mouth are inverted relative to the rest of the face, looks grotesque when shown upright but not when inverted. In four experiments we investigated the contribution of local and global processing to this illusion in normal observers. We examined inversion effects (i.e., better performance for upright than for inverted faces) in a task requiring discrimination of whether faces were or were not "thatcherized". Observers made same/different judgements to isolated face parts (Experiments 1-2) and to whole faces (Experiments 3-4). Face pairs had the same or different identity, allowing for different processing strategies using feature-based or configural information, respectively. In Experiment 1, feature-based matching of same-person face parts yielded only a small inversion effect for normal face parts. However, when feature-based matching was prevented by using the face parts of different people on all trials (Experiment 2) an inversion effect occurred for normal but not for thatcherized parts. In Experiments 3 and 4, inversion effects occurred with normal but not with thatcherized whole faces, on both same- and different-person matching tasks. This suggests that a common configural strategy was used with whole (normal) faces. Face context facilitated attention to misoriented parts in same-person but not in different-person matching. The results indicate that (1) face inversion disrupts local configural processing, but not the processing of image features, and (2) thatcherization disrupts local configural processing in upright faces.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study considers the application of image analysis in petrography and investigates the possibilities for advancing existing techniques by introducing feature extraction and analysis capabilities of a higher level than those currently employed. The aim is to construct relevant, useful descriptions of crystal form and inter-crystal relations in polycrystalline igneous rock sections. Such descriptions cannot be derived until the `ownership' of boundaries between adjacent crystals has been established: this is the fundamental problem of crystal boundary assignment. An analysis of this problem establishes key image features which reveal boundary ownership; a set of explicit analysis rules is presented. A petrographic image analysis scheme based on these principles is outlined and the implementation of key components of the scheme considered. An algorithm for the extraction and symbolic representation of image structural information is developed. A new multiscale analysis algorithm which produces a hierarchical description of the linear and near-linear structure on a contour is presented in detail. Novel techniques for symmetry analysis are developed. The analyses considered contribute both to the solution of the boundary assignment problem and to the construction of geologically useful descriptions of crystal form. The analysis scheme which is developed employs grouping principles such as collinearity, parallelism, symmetry and continuity, so providing a link between this study and more general work in perceptual grouping and intermediate level computer vision. Consequently, the techniques developed in this study may be expected to find wider application beyond the petrographic domain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many tracking algorithms have difficulties dealing with occlusions and background clutters, and consequently don't converge to an appropriate solution. Tracking based on the mean shift algorithm has shown robust performance in many circumstances but still fails e.g. when encountering dramatic intensity or colour changes in a pre-defined neighbourhood. In this paper, we present a robust tracking algorithm that integrates the advantages of mean shift tracking with those of tracking local invariant features. These features are integrated into the mean shift formulation so that tracking is performed based both on mean shift and feature probability distributions, coupled with an expectation maximisation scheme. Experimental results show robust tracking performance on a series of complicated real image sequences. © 2010 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The local image representation produced by early stages of visual analysis is uninformative regarding spatially extensive textures and surfaces. We know little about the cortical algorithm used to combine local information over space, and still less about the area over which it can operate. But such operations are vital to support perception of real-world objects and scenes. Here, we deploy a novel reverse-correlation technique to measure the extent of spatial pooling for target regions of different areas placed either in the central visual field, or more peripherally. Stimuli were large arrays of micropatterns, with their contrasts perturbed individually on an interval-by-interval basis. By comparing trial-by-trial observer responses with the predictions of computational models, we show that substantial regions (up to 13 carrier cycles) of a stimulus can be monitored in parallel by summing contrast over area. This summing strategy is very different from the more widely assumed signal selection strategy (a MAX operation), and suggests that neural mechanisms representing extensive visual textures can be recruited by attention. We also demonstrate that template resolution is much less precise in the parafovea than in the fovea, consistent with recent accounts of crowding. © 2014 The Authors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As one of the most popular deep learning models, convolution neural network (CNN) has achieved huge success in image information extraction. Traditionally CNN is trained by supervised learning method with labeled data and used as a classifier by adding a classification layer in the end. Its capability of extracting image features is largely limited due to the difficulty of setting up a large training dataset. In this paper, we propose a new unsupervised learning CNN model, which uses a so-called convolutional sparse auto-encoder (CSAE) algorithm pre-Train the CNN. Instead of using labeled natural images for CNN training, the CSAE algorithm can be used to train the CNN with unlabeled artificial images, which enables easy expansion of training data and unsupervised learning. The CSAE algorithm is especially designed for extracting complex features from specific objects such as Chinese characters. After the features of articficial images are extracted by the CSAE algorithm, the learned parameters are used to initialize the first CNN convolutional layer, and then the CNN model is fine-Trained by scene image patches with a linear classifier. The new CNN model is applied to Chinese scene text detection and is evaluated with a multilingual image dataset, which labels Chinese, English and numerals texts separately. More than 10% detection precision gain is observed over two CNN models.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Edges are key points of information in visual scenes. One important class of models supposes that edges correspond to the steepest parts of the luminance profile, implying that they can be found as peaks and troughs in the response of a gradient (1st derivative) filter, or as zero-crossings in the 2nd derivative (ZCs). We tested those ideas using a stimulus that has no local peaks of gradient and no ZCs, at any scale. The stimulus profile is analogous to the Mach ramp, but it is the luminance gradient (not the absolute luminance) that increases as a linear ramp between two plateaux; the luminance profile is a blurred triangle-wave. For all image-blurs tested, observers marked edges at or close to the corner points in the gradient profile, even though these were not gradient maxima. These Mach edges correspond to peaks and troughs in the 3rd derivative. Thus Mach edges are inconsistent with many standard edge-detection schemes, but are nicely predicted by a recent model that finds edge points with a 2-stage sequence of 1st then 2nd derivative operators, each followed by a half-wave rectifier.