4 resultados para load cell
em Aston University Research Archive
Resumo:
Several axi-symmetric EN3B steel components differing in shape and size were forged on a 100 ton joint knuckle press. A load cell fitted under the lower die inserts recorded the total deformation forces. Job parameters were measured off the billets and the forged parts. Slug temperatures were varied and two lubricants - aqueous colloidal graphite and oil - were used. An industrial study was also conducted to check the results of the laboratory experiments. Loads were measured (with calibrated extensometers attached to the press frames) when adequately heated mild steel slugs were being forged in finishing dies. Geometric parameters relating to the jobs and the dies were obtained from works drawings. All the variables considered in the laboratory study could not, however, be investigated without disrupting production. In spite of this obvious limitation, the study confirmed that parting area is the most significant geometric factor influencing the forging load. Multiple regression analyses of the laboratory and industrial results showed that die loads increase significantly with the weights and parting areas of press forged components, and with the width to thickness ratios of the flashes formed, but diminish with increasing slug temperatures and higher billet diameter to height ratios. The analyses also showed that more complicated parts require greater loads to forge them. Die stresses, due to applied axial loads, were investigated by the photoelastic method. The three dimensional frozen stress technique was employed. Model dies were machined from cast araldite cylinders, and the slug material was simulated with plasticene. Test samples were cut from the centres of the dies after the stress freezing. Examination of the samples, and subsequent calculations, showed that the highest stresses were developed in die outer corners. This observation partly explains why corner cracking occurs frequently in industrial forging dies. Investigation of die contact during the forging operation revealed the development of very high stresses.
Resumo:
This investigation examined the process of the longitudinal rolling of tubes through a set of three driven grooved rolls. Tubes were rolled with or without internal support i.e. under mandrel rolling or sinking conditions. Knowledge was required of the way in which the roll separating force and rolling torque vary for different conditions of rolling. The objective of this work being to obtain a better understanding and optimization of the mechanics of the process. The design and instrumentation of a complete experimental three-roll mill for the rolling of lead tube as an analogue material for hot steel, with the measurement of the individual roll force and torque is described. A novel type of roll load cell was incorporated and its design and testing discussed. Employing three roll sizes of 170 mm, 255 mm and 340 mm shroud diameter, precise tube specimens of various tube diameter to thickness ratios were rolled under sinking and mandrel rolling conditions. To obtain an indication of the tube-roll contact areas some of the specimens were partially rolled. For comparative purposes the remaining tubes were completely rolled as a single pass. The roll forces, torques and tube parameters e.g. reduction of area, D/t ratio, were collated and compared for each of the three roll diameters considered. The influence of friction, particularly in the mandrel rolling process, was commented upon. Theoretical studies utilising the equilibrium and energy methods were applied to both the sinking and mandrel rolling processes. In general, the energy approach gave better comparison with experiment, especially for mandrel rolling. The influence of the tube deformation zones on the two processes was observed and on the subsequent modification of the tube-roll arc contact length. A rudimentary attempt was made in the theoretical sinking analysis to allow for the deformation zone prior to roll contact; some success was noted. A general survey of the available tube rolling literature, for both the sinking and mandrel processes has been carried out.
Resumo:
AIM: To determine the force needed to extract a drop from a range of current prostaglandin monotherapy eye droppers and how this related to the comfortable and maximum pressure subjects could exert. METHODS: The comfortable and maximum pressure subjects could apply to an eye dropper constructed around a set of cantilevered pressure sensors and mounted above their eye was assessed in 102 subjects (mean 51.2±18.7 years), repeated three times. A load cell amplifier, mounted on a stepper motor controlled linear slide, was constructed and calibrated to test the force required to extract the first three drops from 13 multidose or unidose latanoprost medication eye droppers. RESULTS: The pressure that could be exerted on a dropper comfortably (25.9±17.7 Newtons, range 1.2-87.4) could be exceeded with effort (to 64.8±27.1 Newtons, range 19.9-157.8; F=19.045, p<0.001), and did not differ between repeats (F=0.609, p=0.545). Comfortable and maximum pressures exerted were correlated (r=0.618, p<0.001), neither were influenced strongly by age (r=0.138, p=0.168; r=-0.118, p=0237, respectively), but were lower in women than in men (F=12.757, p=0.001). The force required to expel a drop differed between dropper designs (F=22.528, p<0.001), ranging from 6.4 Newtons to 23.4 Newtons. The force needed to exert successive drops increased (F=36.373, p<0.001) and storing droppers in the fridge further increased the force required (F=7.987, p=0.009). CONCLUSIONS: Prostaglandin monotherapy droppers for glaucoma treatment vary in their resistance to extract a drop and with some a drop could not be comfortably achieved by half the population, which may affect compliance and efficacy.
Resumo:
The rodent ventrobasal (VB) thalamus receives sensory inputs from the whiskers and projects to the cortex, from which it receives reciprocal excitatory afferents. Much is known about the properties and functional roles of these glutamatergic inputs to thalamocortical neurons in the VB, but no data are available on how these afferents can affect thalamic glial cells. In this study, we used combined electrophysiological recordings and intracellular calcium ([Ca(2+)](i)) imaging to investigate glial cell responses to synaptic afferent stimulation. VB thalamus glial cells can be divided into two groups based on their [Ca(2+)](i) and electrophysiological responses to sensory and corticothalamic stimulation. One group consists of astrocytes, which stain positively for S100B and preferentially load with SR101, have linear current-voltage relations and low input resistance, show no voltage-dependent [Ca(2+)](i) responses, but express mGluR5-dependent [Ca(2+)](i) transients following stimulation of the sensory and/or corticothalamic excitatory afferent pathways. Cells of the other glial group, by contrast, stain positively for NG2, and are characterized by high input resistance, the presence of voltage-dependent [Ca(2+)](i) elevations and voltage-gated inward currents. There were no synaptically induced [Ca(2+)](i) elevations in these cells under control conditions. These results show that thalamic glial cell responses to synaptic input exhibit different properties to those of thalamocortical neurons. As VB astrocytes can respond to synaptic stimulation and signal to neighbouring neurons, this glial cell organization may have functional implications for the processing of somatosensory information and modulation of behavioural state-dependent thalamocortical network activities.