4 resultados para lining epithelium

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cell culture model of the gastric epithelial cell surface would prove useful for biopharmaceutical screening of new chemical entities and dosage forms. A successful model should exhibit tight junction formation, maintenance of differentiation and polarity. Conditions for primary culture of guinea-pig gastric mucous epithelial cell monolayers on Tissue Culture Plastic (TCP) and membrane insects (Transwells) were established. Tight junction formation for cells grown on Transwells for three days was assessed by measurement of transepithelial resistance (TEER) and permeability of mannitol and fluorescein. Coating the polycarbonate filter with collagen IV, rather with collagen I, enhanced tight junction formation. TEER for cells grown on Transwells coated with collagen IV was close to that obtained with intact guinea-pig gastric epithelium in vitro. Differentiation was assessed by incorporation of [3H] glucosamine into glycoprotein and by activity of NADPH oxidase, which produces superoxide. Both of these measures were greater for cells grown on filters coated with collagen I than for cells grown on TCP, but no major difference was found between cells grown on collagens I and IV. However, monolayers grown on membranes coated with collagen IV exhibited apically polarized secretion of mucin and superoxide. The proportion of cells, which stained positively for mucin with periodic Schiff reagent, was greater than 95% for all culture conditions. Gastric epithelial monolayers grown on Transwells coated with collagen IV were able to withstand transient (30 min) apical acidification to pH 3, which was associated with a decrease in [3H] mannitol flux and an increase in TEER relative to pH 7.4. The model was used to provide the first direct demonstration that an NSAID (indomethacin) accumulated in gastric epithelial cells exposed to low apical pH. In conclusion, guinea-pig epithelial cells cultured on collagen IV represent a promising model of the gastric surface epithelium suitable for screening procedures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: There is an inverse relationship between pocket depth and pocket oxygen tension with deep pockets being associated with anaerobic bacteria. However, little is known about how the host tissues respond to bacteria under differing oxygen tensions within the periodontal pocket. Aim: To investigate the effect of different oxygen tensions upon nuclear factor-kappa B (NF-?B) activation and the inflammatory cytokine response of oral epithelial cells when exposed to nine species of oral bacteria. Materials and Methods: H400 oral epithelial cells were equilibrated at 2%, 10% or 21% oxygen. Cells were stimulated with heat-killed oral bacteria at multiplicity of infection 10:1, Escherichia coli lipopolysaccharide (15 µg/ml) or vehicle control. Interleukin-8 (IL-8) and tumour necrosis factor-alpha (TNF-a) levels were measured by enzyme-linked immunosorbent assay and NF-?B activation was measured by reporter vector or by immunohistochemical analysis. Results: Tannerella forsythensis, Porphyromonas gingivalis and Prevotella intermedia elicited the greatest epithelial NF-?B activation and cytokine responses. An oxygen-tension-dependent trend in cytokine production was observed with the highest IL-8 and TNF-a production observed at 2% oxygen and lowest at 21% oxygen. Conclusions: These data demonstrate a greater pro-inflammatory host response and cell signalling response to bacteria present in more anaerobic conditions, and hypersensitivity of epithelial cells to pro-inflammatory stimuli at 2% oxygen, which may have implications for disease pathogenesis and/or therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose. To evaluate the influence of soft contact lens midperipheral shape profile and edge design on the apparent epithelial thickness and indentation of the ocular surface with lens movement. Methods. Four soft contact lens designs comprising of two different plano midperipheral shape profiles and two edge designs (chiseled and knife edge) of silicone-hydrogel material were examined in 26 subjects aged 24.7 ± 4.6 years, each worn bilaterally in randomized order. Lens movement was imaged enface on insertion, at 2 and 4 hours with a high-speed, high-resolution camera simultaneous to the cross-section of the edge of the contact lens interaction with the ocular surface captured using optical coherence tomography (OCT) nasally, temporally, and inferiorly. Optical imaging distortions were individually corrected for by imaging the apparent distortion of a glass slide surface by the removed lens. Results. Apparent epithelial thickness varied with edge position (P < 0.001). When distortion was corrected for, epithelial indentation decreased with time after insertion (P = 0.010), changed after a blink (P < 0.001), and varied with position on the lens edge (P < 0.001), with the latter being affected by midperipheral lens shape profile and edge design. Horizontal and vertical lens movement did not change with time postinsertion. Vertical motion was affected by midperipheral lens shape profile (P < 0.001) and edge design (P < 0.001). Lens movement was associated with physiologic epithelium thickness for lens midperipheral shape profile and edge designs. Conclusions. Dynamic OCT coupled with high-resolution video demonstrated that soft contact lens movement and image-corrected ocular surface indentation were influenced by both lens edge design and midperipheral lens shape profiles. © 2013 The Association for Research in Vision and Ophthalmology, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have shown that proteins within apically enriched fractions of human nasal respiratory epithelium vary their phosphohistidine content with ambient [Cl-] and other anion concentrations. This membrane-delimited phosphorylation cascade includes a multifunctional protein histidine kinase - nucleoside diphosphate kinase (NDPK). NDPK is itself a cascade component in both human and ovine airway, the self-phosphorylation of which is inhibited selectively by [Na+] in the presence of ATP (but not GTP). These findings led us to propose the existence of a dual anion-/cation-controlled phosphorylation-based "sensor" bound to the apical membrane. The present study showed that this cascade uses ATP to phosphorylate a group of proteins above 45 kDa (p45-group, identities unknown). Additionally, the Cl- dependence of ATP (but not GTP) phosphorylation is conditional on phosphatase activity and that interactions exist between the ATP- and GTP-phosphorylated components of the cascade under Cl--free conditions. As a prelude to studies in cystic fibrosis (CF) mice, we showed in the present study that NDPK is present and functionally active in normal murine airway. Since NDPK is essential for UTP synthesis and regulates fetal gut development, G proteins, K+channels, neutrophil-mediated inflammation and pancreatic secretion, the presence of ion-regulated NDPK protein in mouse airway epithelium might aid understanding of the pathogenesis of CF.