7 resultados para light-dark cycle
em Aston University Research Archive
Resumo:
Visual detection performance (d') is usually an accelerating function of stimulus contrast, which could imply a smooth, threshold-like nonlinearity in the sensory response. Alternatively, Pelli (1985 Journal of the Optical Society of America A 2 1508 - 1532) developed the 'uncertainty model' in which responses were linear with contrast, but the observer was uncertain about which of many noisy channels contained the signal. Such internal uncertainty effectively adds noise to weak signals, and predicts the nonlinear psychometric function. We re-examined these ideas by plotting psychometric functions (as z-scores) for two observers (SAW, PRM) with high precision. The task was to detect a single, vertical, blurred line at the fixation point, or identify its polarity (light vs dark). Detection of a known polarity was nearly linear for SAW but very nonlinear for PRM. Randomly interleaving light and dark trials reduced performance and rendered it non-linear for SAW, but had little effect for PRM. This occurred for both single-interval and 2AFC procedures. The whole pattern of results was well predicted by our Monte Carlo simulation of Pelli's model, with only two free parameters. SAW (highly practised) had very low uncertainty. PRM (with little prior practice) had much greater uncertainty, resulting in lower contrast sensitivity, nonlinear performance, and no effect of external (polarity) uncertainty. For SAW, identification was about v2 better than detection, implying statistically independent channels for stimuli of opposite polarity, rather than an opponent (light - dark) channel. These findings strongly suggest that noise and uncertainty, rather than sensory nonlinearity, limit visual detection.
Resumo:
The dimethyl-xanthine derivative pentoxifylline (PTX) increases blood flow through capillaries. In elderly humans the drug leads to improvement in a number of imapired neuropsychological parameters. We now report that oral administration to 29-month female mice (C57, black and tan) over six days induced four different patterns of behavioural reponse: (1) consistent improvement in grooming behaviour throughout the six day trial; (2) significant improvement in light/dark zone curiosity and curiosity towards a strange object on day three, which declined but remained significantly above pre-treatment levels at day 6; (3) an improvement in general activity which only becomes detectable on day six; (4) a significant improvement in rod-walking, rearing an shuttle-box crosses on day three which returned to pre-treatment levels by day 6. Age-related deficits in general activity, grooming and curiosity were completely eliminated by the drug - the mean group performance levels attained those seen in 9-12 month individuals of this strain.
Resumo:
Exposure to the solar ultraviolet spectrum that penetrates the Earth's stratosphere (UVA and UVB) causes cellular DNA damage within skin cells. This damage is elicited directly through absorption of energy (UVB), and indirectly through intermediates such as sensitizer radicals and reactive oxygen species (UVA). DNA damage is detected as strand breaks or as base lesions, the most common lesions being 8-hydroxydeoxyguanosine (8OHdG) from UVA exposure and cyclobutane pyrimidine dimers from UVB exposure. The presence of these products in the genome may cause misreading and misreplication. Cells are protected by free radical scavengers that remove potentially mutagenic radical intermediates. In addition, the glutathione-S-transferase family can catalyze the removal of epoxides and peroxides. An extensive repair capacity exists for removing (1) strand breaks, (2) small base modifications (8OHdG), and (3) bulky lesions (cyclobutane pyrimidine dimers). UV also stimulates the cell to produce early response genes that activate a cascade of signaling molecules (e.g., protein kinases) and protective enzymes (e.g., haem oxygenase). The cell cycle is restricted via p53-dependent and -independent pathways to facilitate repair processes prior to replication and division. Failure to rescue the cell from replication block will ultimately lead to cell death, and apoptosis may be induced. The implications for UV-induced genotoxicity in disease are considered.
Resumo:
This thesis presents experimental and theoretical work on the use of dark optical solitons as data carriers in communications systems. The background chapters provide an introduction to nonlinear optics, and to dark solitons, described as intensity dips in a bright background, with an asymmetrical phase profile. The motivation for the work is explained, considering both the superior stability of dark solitons and the need for a soliton solution suitable for the normal, rather than the anomalous (bright soliton) dispersion regime. The first chapters present two generation techniques, producing packets of dark solitons via bright pulse interaction, and generating continuous trains of dark pulses using a fibre laser. The latter were not dark solitons, but were suitable for imposition of the required phase shift by virtue of their extreme stability. The later chapters focus on the propagation and control of dark solitons. Their response to periodic loss and gain is shown to result in the exponential growth of spectral sidebands. This may be suppressed by reducing the periodicity of the loss/gain cycle or using periodic filtering. A general study of the response of dark solitons to spectral filtering is undertaken, showing dramatic differences in the behaviour of black and 99.9% grey solitons. The importance of this result is highlighted by simulations of propagation in noisy systems, where the timing jitter resulting from random noise is actually enhanced by filtering. The results of using sinusoidal phase modulation to control pulse position are presented, showing that the control is at the expense of serious modulation of the bright background. It is concluded that in almost every case, dark and bright solitons have very different properties, and to continue to make comparisons would not be so productive as to develop a deeper understanding of the interactions between the dark soliton and its bright background.
Resumo:
An investigation was made into the nature and control of the annual reproductive cycle of the dace, Leuciscus leuciscus. It includes 1) a study of the natural reproductive cycle, 2) the use of Carp Pituitary Extract (CPE) to induce final maturation and ovulation in captive fish, 3) the effect of artificial light treatments on ovarian development and 4) the measurement of serum melatonin levels under different photoperiod regimes. Ovarian development was monitored by endocrinological data, notably serum cycles of 17-oestradiol (E2), testosterone (T), and calcium (as an index of vitellogenin), oocyte diameter, the gonadosomatic index and histological studies of the ovary. Under natural conditions, ovarian development can broadly be divided into 4 stages: 1) oogenesis which occurs immediately after spawning; 2) a primary growth phase (previtellogenic growth) prevalent between spawning and June; 3) a secondary growth phase (yolk vesicle plus vitellogenic growth) occurring between June and December and 4) final maturation and ovulation which occurs in mid-March. During the annual ovarian cycle, the sex steroids E2 and T showed two clear elevations. The first occurred initially in April followed by a rise in serum calcium levels. This subsequently initiated the appearance of yolk granules in the oocytes in June. The second rise occurred in September and levels were maintained until December, after which there was a decline in serum E2 levels. It is proposed that in the dace, high serum E2 levels between September and December were required to maintain vitellogenin production and therefore its uptake into the developing oocytes which occurred during this time, albeit at a slower rate than in the summer months. After December, prior to final maturation, whereas serum E2 and calcium levels declined, serum T levels remained elevated. In captivity, final maturation beyond the germinal vesicle migration stage failed to occur suggesting that the stimuli required for these events were absent. However ovulation could be induced by a single injection of CPE, which induced ovulation between 6 and 14 hours after treatment. Endocrine events associated with the artificial induction of spawning included a rise in serum levels of E2, T and the maturation inducing steroid 1720-dihydroxy progesterone. Photoperiodic manipulation demonstrated that whereas short or increasing daylengths were stimulatory to ovarian development, long days delayed development. Changes from long to short and constant short daylengths early in the reproductive cycle advanced maturation (up to 5 months), suggesting that the stimulus for ovarian development and maturation was a short day. However, experiments conducted later in the reproductive cycle demonstrated that only a simulated ambient photoperiod could induce final maturation. It is proposed therefore that under natural conditions the environmental stimulus for ovarian development and final maturation are short and increasing daylengths respectively. Further support that photoperiod is the dominant timing cue in this species was provided by the pattern of serum melatonin levels. Under different photoperiod treatments, serum melatonin, which is believed to be the chemical transducer of photoperiodic information (similar to other photoperiodic species) was elevated for the duration of the dark phase, indicating that the dace at least has the ability to `measure' changes in daylength.
Resumo:
1. Exchange of carbon dioxide (CO2) from soils can contribute significantly to the global warming potential (GWP) of agro-ecosystems. Due to variations in soil type, climatic onditions and land management practices, exchange of CO2 can differ markedly in different geographical locations. The food industry is developing carbon footprints for their products necessitating integration of CO2 exchange from soils with other CO2 emissions along the food chain. It may be advantageous to grow certain crops in different geographical locations to minimize CO2 emissions from the soil, and this may provide potential to offset other emissions in the food chain, such as transport. 2. Values are derived for the C balance of soils growing horticultural crops in the UK, Spain and Uganda. Net ecosystem production (NEP) is firstly calculated from the difference in net primary production (NPP) and heterotrophic soil respiration (Rh). Both NPP and Rh were estimated from intensive direct field measurements. Secondly, net biome production (NBP) is calculated by subtracting the crop biomass from NEP to give an indication of C balance. The importance of soil exchange is discussed in the light of recent discussions on carbon footprints and within the context of food life-cycle assessment (LCA). 3. The amount of crop relative to the biomass and the Rh prevailing in the different countries were the dominant factors influencing the magnitude of NEP and NBP. The majority of the biomass for lettuce Lactuca sativa and vining peas Pisum sativum, was removed from the field as crop; therefore, NEP and NBP were mainly negative. This was amplified for lettuces grown in Uganda (-16·5 and -17 t C ha-1 year-1 compared to UK and Spain -4·8 to 7·4 and -5·1 to 6·3 t C ha-1 year-1 for NEP and NBP, respectively) where the climate elevated Rh. 4. Synthesis and applications. This study demonstrates the importance of soil emissions in the overall life cycle of vegetables. Variability in such emissions suggests that assigning a single value to food carbon footprints may not be adequate, even within a country. Locations with high heterotrophic soil respiration, such as Spain and Uganda (21·9 and 21·6 t C ha-1 year-1, respectively), could mitigate the negative effects of climate on the C costs of crop production by growth of crops with greater returns of residue to the soil. This would minimize net CO2 emissions from these agricultural ecosystems.
Resumo:
We report on conical refraction (CR) experiments with low-coherent light sources such as light-emitting diodes (LEDs) that demonstrated different CR patterns. The change of a pinhole size from 25 to 100 μm reduced the spatial coherence of the LED radiation and resulted in the disappearance of the dark Poggendorf ring in the Lloyd's plane. This is attributed to the interference nature of the Lloyd's distribution and is found to be in excellent agreement with the paraxial dual-cone model of CR.