8 resultados para leucine rich repeat kinase 2
em Aston University Research Archive
Resumo:
We describe a non-invasive phakometric method for determining corneal axis rotation relative to the visual axis (β) together with crystalline lens axis tilt (α) and decentration (d) relative to the corneal axis. This does not require corneal contact A-scan ultrasonography for the measurement of intraocular surface separations. Theoretical inherent errors of the method, evaluated by ray tracing through schematic eyes incorporating the full range of human ocular component variations, were found to be larger than the measurement errors (β < 0.67°, α < 0.72° and d < 0.08 mm) observed in nine human eyes with known ocular component dimensions. Intersubject variations (mean ± S.D.: β = 6.2 ± 3.4° temporal, α = 0.2 ± 1.8° temporal and d = 0.1 ± 0.1 mm temporal) and repeatability (1.96 × S.D. of difference between repeat readings: β ± 2.0°, α ± 1.8° and d ± 0.2 mm) were studied by measuring the left eyes of 45 subjects (aged 18-42 years, 29 females and 16 males, 15 Caucasians, 29 Indian Asians, one African, refractive error range -7.25 to +1.25 D mean spherical equivalent) on two occasions. © 2005 The College of Optometrists.
Resumo:
Quaternary ammonium exchanged laponites (Quat-laponites) show selectivity in the adsorption of phenols and chlorinated phenols. Strong adsorbate-adsorbent interactions are indicated by adsorption isotherms. Adsorption of phenols and chlorinated phenols by Quat-smectites is greater than that by the Bi Quat-Smectites prepared in this study. It is thought that the quaternary ammonium exchanged smectite components of the Bi Quat-smectites interact with each other (adsorbent-adsorbent interactions) reducing the number of sites available for adsorbate-adsorbent interactions. Solidification/stabilisation studies of 2-chlorophenol show that a blend of ground granulated blast furnace slag and ordinary Portland cement attenuates 2-chlorophenol more effectively than ordinary Portland cement alone. Tetramethyl ammonium- (TMA-) and tetramethyl phosphonium- (TMP-) montmorillonites were exposed to solutions of phenol or chlorinated phenols. TMP- montmorillonite was the better adsorbent and preferentially adsorbed 4-chlorophenol over phenol. Hydration of the interlayer cations occurs to a greater extent in the TMA-montmorillonite than the TMP-montmorillonite restricting interlayer adsorption. Contrary to that observed for phenols and chlorinated phenols, the Quat-smectites were ineffective as adsorbents for triphenyltin hydroxide and bis(tributyltin) oxide at room temperature. Under microwave conditions, only bis(tributyltin) oxide was adsorbed by the quaternary ammonium exchanged smectites. Bis(tributyltin) oxide was adsorbed from ethanol on the surface of the smectite clays at room temperature and under microwave conditions. The adsorbate-adsorbent interactions were weak. Adsorption is accompanied by conversion of bis(tributyltin) oxide to a different tin(IV) species and the release of sodium cations from the montmorillonite interlayer region. Attempts to introduce conditions suitable for charge transfer interactions between synthesised quaternary ammonium compounds and 2,4,6-trichlorophenol are documented. Transition metal complex exchanged clays adsorb 2,4,6-trichlorophenol and phenol. Strong adsorbate-adsorbent interactions (Type I isotherms) occur when the adsorbate is 2,4,6-trichlorophenol and when the adsorbent is [Fe(bipy)3]2+ exchanged montmorillonite or [Co(bipy)3]3+ exchanged montmorillonite. The 2,2'-bipyridyl ligands of the adsorbents are electron rich and the 2,4,6-trichlorophenol is electron deficient. This may have enhanced adsorbate-adsorbent interactions.
Resumo:
The dielectric relaxation behaviour of a series of cyclic and linear poly(dimethylsiloxanes) with overline nn in the range 28 to 99 has been studied, as a function of temperature (142.0K-157.5K) and frequency (12-105Hz). Activation energies for the -relaxation process, Davidson-Cole empirical distribution factors, , and mean-square dipole moments per repeat unit, < 2> , have been calculated. Differences in values of H_act reflected restricted dipolar rotation for the cyclic structures, compared to the linear structures, over the range of molecular weights studied. The dielectric relaxation behaviour of a series of linear oligomers of methyl phenyl siloxane, with n in the range 4 to 10, a series of linear fractions of poly(methyl phenyl siloxane), with overline n_n in the range 31 to 1370, and a cyclic oligomer of mehyl phenyl siloxane, with n = 10, has been studied as a function of temperature (155.5K-264.0K) and frequency (12-105Hz). Activation energies for the -relaxation process, Davidson-Cole and Cole-Cole empirical distribution factors, and , respectively, and mean-square dipole moments per repeat unit have been calculated. The reduced flexibility of short methyl phenyl siloxane chains, compared to dimethyl siloxane chains, was apparent from a comparison of dipole moment ratios. The dilectric relaxation behaviour of poly(methyl hydrogen siloxane) and poly(n-hexyl methyl siloxane) has been studied as a function of temperature and frequency. A polysiloxane liquid crystal has been synthesised and its dielectric relaxation behaviour has been studied, as a function of temperature and frequency, in the liquid crystalline phase and below T_g. Poly(p-phenylene vinylene) and related oligomers have been synthesised and characterised by a variety of experimental techniques. The Kerr effect of two oligomeric fractions, in solution in PPG 2025, has been measured. The electrical conductivities of the undoped and I_2-doped polymer and oligomers have been measured.
Resumo:
Mesenchymal stem cells (MSCs) stimulate angiogenesis within a wound environment and this effect is mediated through paracrine interactions with the endothelial cells present. Here we report that human MSC-conditioned medium (n=3 donors) significantly increased EaHy-926 endothelial cell adhesion and cell migration, but that this stimulatory effect was markedly donor-dependent. MALDI-TOF/TOF mass spectrometry demonstrated that whilst collagen type I and fibronectin were secreted by all of the MSC cultures, the small leucine rich proteoglycan, decorin was secreted only by the MSC culture that was least effective upon EaHy-926 cells. These individual extracellular matrix components were then tested as culture substrata. EaHy-926 cell adherence was greatest on fibronectin-coated surfaces with least adherence on decorin-coated surfaces. Scratch wound assays were used to examine cell migration. EaHy-926 cell scratch wound closure was quickest on substrates of fibronectin and slowest on decorin. However, EaHy-926 cell migration was stimulated by the addition of MSC-conditioned medium irrespective of the types of culture substrates. These data suggest that whilst the MSC secretome may generally be considered angiogenic, the composition of the secretome is variable and this variation probably contributes to donor-donor differences in activity. Hence, screening and optimizing MSC secretomes will improve the clinical effectiveness of pro-angiogenic MSC-based therapies.
Resumo:
Transglutaminase 2 (TG2) is a protein crosslinking enzyme with several additional biochemical functions. Loss of TG2 in vivo results in impaired phagocytosis of apoptotic cells and altered proinflammatory cytokine production by macrophages engulfing apoptotic cells leading to autoimmunity. It has been proposed that TG2 acts as an integrin ß(3) coreceptor in the engulfment process, while altered proinflammatory cytokine production is related to the lack of latent TGFß activation by TG2 null macrophages. Here we report that TG2 null macrophages respond to lipopolysaccharide treatment by elevated IL-6 and TNFa production. Though TGFß has been proposed to act as a feed back regulator of proinflammatory cytokine production in LPS-stimulated macrophages, this phenomenon is not related to the lack of active TGFß production. Instead, in the absence of TG2 integrin ß(3) maintains an elevated basal Src family kinase activity in macrophages, which leads to enhanced phosphorylation and degradation of the I?Ba. Low basal levels of I?Ba explain the enhanced sensitivity of TG2 null macrophages to signals that regulate NF-?B. Our data suggest that TG2 null macrophages bear a proinflammatory phenotype, which might contribute to the enhanced susceptibility of these mice to develop autoimmunity and atherosclerosis.
Resumo:
Previous studies suggest that the activation (autophosphorylation) of dsRNA-dependent protein kinase (PKR) can stimulate protein degradation, and depress protein synthesis in skeletal muscle through phosphorylation of the translation initiation factor 2 (eIF2) on the alpha-subunit. To understand whether these mediators are important in muscle wasting in cancer patients, levels of the phospho forms of PKR and eIF2alpha have been determined in rectus abdominus muscle of weight losing patients with oesophago-gastric cancer, in comparison with healthy controls. Levels of both phospho PKR and phospho eIF2alpha were significantly enhanced in muscle of cancer patients with weight loss irrespective of the amount and there was a linear relationship between phosphorylation of PKR and phosphorylation of eIF2alpha (correlation coefficient 0.76, P=0.005). This suggests that phosphorylation of PKR led to phosphorylation of eIF2alpha. Myosin levels decreased as the weight loss increased, and there was a linear relationship between myosin expression and the extent of phosphorylation of eIF2alpha (correlation coefficient 0.77, P=0.004). These results suggest that phosphorylation of PKR may be an important initiator of muscle wasting in cancer patients.
Resumo:
Vascular insufficiency and retinal ischemia precede many proliferative retinopathies and stimulate secretion of various vasoactive growth factors, including vascular endothelial growth factor (VEGF) and placenta growth factor (PlGF). It is unclear, however, how PlGF, which is elevated in proliferative diabetic retinopathy and is a VEGF homolog that binds only to VEGF receptor (VEGFR)-1, promotes pathological angiogenesis. When primary microvascular endothelial cells were grown on collagen gels, PlGF-containing ligands upregulated Bcl-2 expression and stimulated the formation of capillary-like tube networks that were retained for up to 14 days in culture. The inhibition of VEGFR-1 results in a dramatic decrease in the number of capillary connections, indicating that VEGFR-1 ligands promote branching angiogenesis. In contrast, VEGF-induced tube formations and Bcl-2 expression were significantly decreased at the end of this period. Flow cytometry analysis of annexin-V/propidium iodide-stained cells revealed that PlGF and PlGF/VEGF heterodimer inhibited apoptosis in serum-deprived endothelial cells. These two growth factors stimulated a survival signaling pathway phosphatidylinositol 3-kinase (PI3K), as identified by increased Akt phosphorylation and because blocking PI3K signalling by adenovirus-mediated overexpression of wild-type phosphatase and tensin homolog on chromosome 10 (PTEN) disrupted angiogenesis and decreased Bcl-2 expression by PlGF and PlGF/VEGF heterodimer, whereas a dominant-negative PTEN mutant enhanced endothelial sprout formation and Bcl-2 expression. Together, these findings indicate that PlGF-containing ligands contribute to pathological angiogenesis by prolonging cell survival signals and maintaining vascular networks.