12 resultados para length diameter ratio
em Aston University Research Archive
Resumo:
Measurements were carried out to determine local coefficients of heat transfer in short lengths of horizontal pipe, and in the region of an discontinuity in pipe diameter. Laminar, transitional and turbulent flow regimes were investigated, and mixtures of propylene glycol and water were used in the experiments to give a range of viscous fluids. Theoretical and empirical analyses were implemented to find how the fundamental mechanism of forced convection was modified by the secondary effects of free convection, temperature dependent viscosity, and viscous dissipation. From experiments with the short tube it was possible to determine simple empirical relationships describing the axial distribution of the local 1usselt number and its dependence on the Reynolds and Prandtl numbers. Small corrections were made to account for the secondary effects mentioned above. Two different entrance configurations were investigated to demonstrate how conditions upstream could influence the heat transfer coefficients measured downstream In experiments with a sudden contraction in pipe diameter the distribution of local 1u3se1t number depended on the Prandtl number of the fluid in a complicated way. Graphical data is presented describing this dependence for a range of fluids indicating how the local Nusselt number varied with the diameter-ratio. Ratios up to 3.34:1 were considered. With a sudden divergence in pipe diameter, it was possible to derive the axial distribution of the local Nusse1t number for a range of Reynolds and Prandtl numbers in a similar way to the convergence experiments. Difficulty was encountered in explaining some of the measurements obtained at low Reynolds numbers, and flow visualization techniques wore used to determine the complex flow patterns which could lead to the anomalous results mentioned. Tests were carried out with divergences up to 1:3.34 to find the way in which the local Nusselt number varied with the diameter ratio, and a few experiments were carried out with very large ratios up .to 14.4. A limited amount of theoretical analysis of the 'divergence' system was carried out to substantiate certain explanations of the heat transfer mechanisms postulated.
Resumo:
The thesis presents experimental results for shell-side transfer coefficients and pressure drops across four different tube banks, using small-scale models, with yawed tubes, as found in many types of heat exchangers, boilers and nuclear reactors. The tube banks investigated have a staggered tube layout on a rotated square pitch, with a 1.25 pitch-to-diameter ratio. The angle of attack was varied between 45o and 90o. An extensive range of Reynolds number, i.e. 0.5. to 12,600, covering so-called laminar, transition and turbulent flows, was investigated. A diffusion-controlled electrochemical mass transfer technique has been employed to measure mass transfer coefficients. The heat transfer coefficients may be then readily obtained from the mass transfer values by applying the well-established Chilton-Colburn analogy. The results for the normal tube bank, which forms the base case for the study on inclined tube banks, show close agreement with previous work. The transfer coefficients and pressure drops of the inclined tube banks are compared with results from the ideal normal tube bank to examine the effect of inclination angle on heat transfer and pressure drop variations. The variation of the transfer coefficients row-by-row and the entrance and exit effects have also been investigated. An auxilary investigation has been carried out on the role of natural convection. A preliminary correlation of transfer coefficients and pressure drops against the variation in the yaw angle has been attempted. The results are discussed in the light of the few existing theoretical treatments and experimental data for these situations, and recommendations made for future work.
Resumo:
The work presented in this thesis is concerned with the heat transfer performance of a single horizontal bare tube and a variety of finned tubes immersed in a shallow air fluidized bed. Results of experimental investigations with the bare tube indicate that the tube position in the bed influences its performance narticularly where fine bed materials are used. In some cases the maximum heat transfer is obtained with the tube in the particle cloud just above the dense phase fluidized bed - a phenomenon that has not been previously observed. This was attributed to the unusual particle circulation in shallow beds. The data is also presented in dimensionless correlations which may be useful for design purposes. A close approximation to the bare tube data can be obtained by using thetransient heating of a spherical robe and this provides a valuable way of accumulating a lot of data very rapidly. The experimental data on finned tubes shows that a fin spacing less than twenty times the average particle diameter can cause a significant reduction in heat transfer due to the interaction which takes place between the particles and the surface of the fins. Furthermore, evidence is provided to show that particle shape plays an important part in the interaction with spherical particles being superior to angular particles at low fin spacing/particle diameter ratio. The finned tube data is less sensitive to tube position in the bed than bare tubes and the best performance is when the tube is positioned at the distributor.A reduction in bed depth decreases the thermal performance of the finned tube but in many practical installations the reduction in pressure drop might more than comnensate for the reduced heat flux. Information is also provided on the theoretical uerformance of fins and the effect of the root contact area between the fins and the tube was investigated.
Resumo:
Objectives - Powdered and granulated particulate materials make up most of the ingredients of pharmaceuticals and are often at risk of undergoing unwanted agglomeration, or caking, during transport or storage. This is particularly acute when bulk powders are exposed to extreme swings in temperature and relative humidity, which is now common as drugs are produced and administered in increasingly hostile climates and are stored for longer periods of time prior to use. This study explores the possibility of using a uniaxial unconfined compression test to compare the strength of caked agglomerates exposed to different temperatures and relative humidities. This is part of a longer-term study to construct a protocol to predict the caking tendency of a new bulk material from individual particle properties. The main challenge is to develop techniques that provide repeatable results yet are presented simply enough to be useful to a wide range of industries. Methods - Powdered sucrose, a major pharmaceutical ingredient, was poured into a split die and exposed to high and low relative humidity cycles at room temperature. The typical ranges were 20–30% for the lower value and 70–80% for the higher value. The outer die casing was then removed and the resultant agglomerate was subjected to an unconfined compression test using a plunger fitted to a Zwick compression tester. The force against displacement was logged so that the dynamics of failure as well as the failure load of the sample could be recorded. The experimental matrix included varying the number of cycles, the amount between the maximum and minimum relative humidity, the height and diameters of the samples, the number of cycles and the particle size. Results - Trends showed that the tensile strength of the agglomerates increased with the number of cycles and also with the more extreme swings in relative humidity. This agrees with previous work on alternative methods of measuring the tensile strength of sugar agglomerates formed from humidity cycling (Leaper et al 2003). Conclusions - The results show that at the very least the uniaxial tester is a good comparative tester to examine the caking tendency of powdered materials, with a simple arrangement and operation that are compatible with the requirements of industry. However, further work is required to continue to optimize the height/ diameter ratio during tests.
Resumo:
Lifelong surveillance is not cost-effective after endovascular aneurysm repair (EVAR), but is required to detect aortic complications which are fatal if untreated (type 1/3 endoleak, sac expansion, device migration). Aneurysm morphology determines the probability of aortic complications and therefore the need for surveillance, but existing analyses have proven incapable of identifying patients at sufficiently low risk to justify abandoning surveillance. This study aimed to improve the prediction of aortic complications, through the application of machine-learning techniques. Patients undergoing EVAR at 2 centres were studied from 2004–2010. Aneurysm morphology had previously been studied to derive the SGVI Score for predicting aortic complications. Bayesian Neural Networks were designed using the same data, to dichotomise patients into groups at low- or high-risk of aortic complications. Network training was performed only on patients treated at centre 1. External validation was performed by assessing network performance independently of network training, on patients treated at centre 2. Discrimination was assessed by Kaplan-Meier analysis to compare aortic complications in predicted low-risk versus predicted high-risk patients. 761 patients aged 75 +/− 7 years underwent EVAR in 2 centres. Mean follow-up was 36+/− 20 months. Neural networks were created incorporating neck angu- lation/length/diameter/volume; AAA diameter/area/volume/length/tortuosity; and common iliac tortuosity/diameter. A 19-feature network predicted aor- tic complications with excellent discrimination and external validation (5-year freedom from aortic complications in predicted low-risk vs predicted high-risk patients: 97.9% vs. 63%; p < 0.0001). A Bayesian Neural-Network algorithm can identify patients in whom it may be safe to abandon surveillance after EVAR. This proposal requires prospective study.
Resumo:
Studies into gas-liquid flow patterns were carried out on commercial scale sieve trays where the ratio of froth depth to flow path length is typical of that found in practice. Experiments were conducted on a 2.44 m diameter air-water distillation simulator, in which flow patterns were investigated by direct observation, using directional flow pointers; by water cooling, to simulate mass transfer; and by height of clear liquid measurements across the tray. The flow rates used are typical of those found in practice. The approach adopted was to investigate the effect of the gas flow on the liquid flow by comparing water only flow patterns across an unperforated tray with air-water flow patterns on perforated trays. Initial gas-liquid contacting experiments on the 6.35 mm hole tray showed that, under certain conditions, the gas flow pattern beneath the test tray can have a significant effect on the tray liquid flow pattern such that gas-driven liquid circulation was produced. This was found to be a function of this particular air-water simulator design, and as far as is known this is the first time that this phenomenon has been observed. Consequently non-uniform gas flow effects were removed by modification of the gas distribution system. By eliminating gas circulation effects, the effect of the gas flow on the separation of liquid flow was similar to that obtained on the 1.0 mm hole tray (Hine, 1990). That is, flow separation occurred at the ends of the inlet downcomer which produced large circulating zones along the tray segments both on the non-perforated and perforated trays. The air when forced through the liquid, inhibited circulating flow such that it only occurred at high water inlet velocities. With the 6.35 mm hole tray, the growth and velocity of circulating flow was reduced at high superficial air velocities, and in the experiments to simulate distillation, liquid was in forward flow over most of the tray.
Resumo:
This work is concerned with a study of certain phenomena related to the performance and design of distributors in gas fluidized beds with particular regard to flowback of solid particles. The work to be described is divided into two parts. I. In Part one, a review of published material pertaining to distribution plates, including details from the patent specifications, has been prepared. After a chapter on the determination of the incipient fluidizing velocity, the following aspects of multi-orifice distributor plates in gas fluidized beds have been studied: (i) The effect of the distributor on bubble formation related to the way in which even distribution of bubbles on the top surface of the fluidized bed is obtained, e.g. the desirable pressure drop ratio ?PD/?PB for the even distribution of gas across the bed. Ratios of distributor pressure drop ?PD to bed pressure drop at which stable fluidization occurs show reasonable agreement with industrial practice. There is evidence that larger diameter beds tend to be less stable than smaller diameter beds when these are operated with shallow beds. Experiments show that in the presence of the bed the distributor pressure drop is reduced relative to the pressure drop without the bed, and this pressure drop in the former condition is regarded as the appropriate parameter for the design of the distributor. (ii) Experimental measurements of bubble distribution at the surface has been used to indicate maldistribution within the bed. Maldistribution is more likely at low gas flow rates and with distributors having large fractional free area characteristics (i.e. with distributors having low pressure drops). Bubble sizes obtained from this study, as well as those of others, have been successfully correlated. The correlation produced implies the existence of a bubble at the surface of an orifice and its growth by the addition of excess gas from the fluidized bed. (iii) For a given solid system, the amount of defluidized particles stagnating on the distributor plate is influenced by the orifice spacing, bed diameter and gas flow rate, but independent of the initial bed height and the way the orifices are arranged on the distributor plate. II. In Part two, solids flowback through single and multi-orifice distributors in two-dimensional and cylindrical beds of solids fluidized with air has been investigated. Distributors equipped with long cylindrical nozzles have also been included in the study. An equation for the prediction of free flowback of solids through multi-orifice distributors has been derived. Under fluidized conditions two regimes of flowback have been differentiated, namely Jumping and weeping. Data in the weeping regime have been successfully correlated. The limiting gas velocity through the distributor orifices at which flowback is completely excluded is found to be indepnndent of bed height, but a function of distributor design and physical properties of gas and solid used. A criterion for the prediction of this velocity has been established. The decisive advantage of increasing the distributor thickness or using nozzles to minimize solids flowback in fluidized beds has been observed and the opportunity taken to explore this poorly studied subject area. It has been noted, probably for the first time, that with long nozzles, there exists a critical nozzle length above which uncontrollable downflow of solids occurs. A theoretical model for predicting the critical length of a bundle of nozzles in terms of gas velocity through the nozzles has been set up. Theoretical calculations compared favourably with experiments.
Resumo:
The literature relating to haze formation, methods of separation, coalescence mechanisms, and models by which droplets <100 μm are collected, coalesced and transferred, have been reviewed with particular reference to particulate bed coalescers. The separation of secondary oil-water dispersions was studied experimentally using packed beds of monosized glass ballotini particles. The variables investigated were superficial velocity, bed depth, particle size, and the phase ratio and drop size distribution of inlet secondary dispersion. A modified pump loop was used to generate secondary dispersions of toluene or Clairsol 350 in water with phase ratios between 0.5-6.0 v/v%.Inlet drop size distributions were determined using a Malvern Particle Size Analyser;effluent, coalesced droplets were sized by photography. Single phase flow pressure drop data were correlated by means of a Carman-Kozeny type equation. Correlations were obtained relating single and two phase pressure drops, as (ΔP2/μc)/ΔP1/μd) = kp Ua Lb dcc dpd Cine A flow equation was derived to correlate the two phase pressure drop data as, ΔP2/(ρcU2) = 8.64*107 [dc/D]-0.27 [L/D]0.71 [dp/D]-0.17 [NRe]1.5 [e1]-0.14 [Cin]0.26 In a comparison between functions to characterise the inlet drop size distributions a modification of the Weibull function provided the best fit of experimental data. The general mean drop diameter was correlated by: q_p q_p p_q /β Γ ((q-3/β) +1) d qp = d fr .α Γ ((P-3/β +1 The measured and predicted mean inlet drop diameters agreed within ±15%. Secondary dispersion separation depends largely upon drop capture within a bed. A theoretical analysis of drop capture mechanisms in this work indicated that indirect interception and London-van der Waal's mechanisms predominate. Mathematical models of dispersed phase concentration m the bed were developed by considering drop motion to be analogous to molecular diffusion.The number of possible channels in a bed was predicted from a model in which the pores comprised randomly-interconnected passage-ways between adjacent packing elements and axial flow occured in cylinders on an equilateral triangular pitch. An expression was derived for length of service channels in a queuing system leading to the prediction of filter coefficients. The insight provided into the mechanisms of drop collection and travel, and the correlations of operating parameters, should assist design of industrial particulate bed coalescers.
Resumo:
This investigation examined the process of the longitudinal rolling of tubes through a set of three driven grooved rolls. Tubes were rolled with or without internal support i.e. under mandrel rolling or sinking conditions. Knowledge was required of the way in which the roll separating force and rolling torque vary for different conditions of rolling. The objective of this work being to obtain a better understanding and optimization of the mechanics of the process. The design and instrumentation of a complete experimental three-roll mill for the rolling of lead tube as an analogue material for hot steel, with the measurement of the individual roll force and torque is described. A novel type of roll load cell was incorporated and its design and testing discussed. Employing three roll sizes of 170 mm, 255 mm and 340 mm shroud diameter, precise tube specimens of various tube diameter to thickness ratios were rolled under sinking and mandrel rolling conditions. To obtain an indication of the tube-roll contact areas some of the specimens were partially rolled. For comparative purposes the remaining tubes were completely rolled as a single pass. The roll forces, torques and tube parameters e.g. reduction of area, D/t ratio, were collated and compared for each of the three roll diameters considered. The influence of friction, particularly in the mandrel rolling process, was commented upon. Theoretical studies utilising the equilibrium and energy methods were applied to both the sinking and mandrel rolling processes. In general, the energy approach gave better comparison with experiment, especially for mandrel rolling. The influence of the tube deformation zones on the two processes was observed and on the subsequent modification of the tube-roll arc contact length. A rudimentary attempt was made in the theoretical sinking analysis to allow for the deformation zone prior to roll contact; some success was noted. A general survey of the available tube rolling literature, for both the sinking and mandrel processes has been carried out.
Resumo:
PURPOSE. To establish an alternative method, sequential and diameter response analysis (SDRA), to determine dynamic retinal vessel responses and their time course in serial stimulation compared with the established method of averaged diameter responses and standard static assessment. METHODS. SDRA focuses on individual time and diameter responses, taking into account the fluctuation in baseline diameter, providing improved insight into reaction patterns when compared with established methods as delivered by retinal vessel analyzer (RVA) software. SDRA patterns were developed with measurements from 78 healthy nonsmokers and subsequently validated in a group of 21 otherwise healthy smokers. Fundus photography and retinal vessel responses were assessed by RVA, intraocular pressure by contact tonometry, and blood pressure by sphygmomanometry. RESULTS. Compared with the RVA software method, SDRA demonstrated a marked difference in retinal vessel responses to flickering light (P 0.05). As a validation of that finding, SDRA showed a strong relation between baseline retinal vessel diameter and subsequent dilatory response in both healthy subjects and smokers (P 0.001). The RVA software was unable to detect this difference or to find a difference in retinal vessel arteriovenous ratio between smokers and nonsmokers (P 0.243). However, SDRA revealed that smokers’ vessels showed both an increased level of arterial baseline diameter fluctuation before flicker stimulation (P 0.005) and an increased stiffness of retinal arterioles (P 0.035) compared with those in nonsmokers. These differences were unrelated to intraocular pressure or systemic blood pressure. CONCLUSIONS. SDRA shows promise as a tool for the assessment of vessel physiology. Further studies are needed to explore its application in patients with vascular diseases.
Resumo:
The transmembrane domain proteins of the claudin superfamily are the major structural components of cellular tight junctions. One family member, claudin-1, also associates with tetraspanin CD81 as part of a receptor complex that is essential for hepatitis C virus (HCV) infection of the liver. To understand the molecular basis of claudin-1/CD81 association we previously produced and purified milligram quantities of functional, full-length CD81, which binds a soluble form of HCV E2 glycoprotein (sE2). Here we report the production, purification and characterization of claudin-1. Both yeast membrane-bound and detergent-extracted, purified claudin-1 were antigenic and recognized by specific antibodies. Analytical ultracentrifugation demonstrated that extraction with n-octyl-ß-d-glucopyranoside yielded monodispersed, dimeric pools of claudin-1 while extraction with profoldin-8 or n-decylphosphocholine yielded a dynamic mixture of claudin-1 oligomers. Neither form bound sE2 in line with literature expectations, while further functional analysis was hampered by the finding that incorporation of claudin-1 into proteoliposomes rendered them intractable to study. Dynamic light scattering demonstrated that claudin-1 oligomers associate with CD81 in vitro in a defined molar ratio of 1:2 and that complex formation was enhanced by the presence of cholesteryl hemisuccinate. Attempts to assay the complex biologically were limited by our finding that claudin-1 affects the properties of proteoliposomes. We conclude that recombinant, correctly-folded, full-length claudin-1 can be produced in yeast membranes, that it can be extracted in different oligomeric forms that do not bind sE2 and that a dynamic preparation can form a specific complex with CD81 in vitro in the absence of any other cellular components. These findings pave the way for the structural characterization of claudin-1 alone and in complex with CD81.
Resumo:
For micro gas turbines (MGT) of around 1 kW or less, a commercially suitable recuperator must be used to produce a thermal efficiency suitable for use in UK Domestic Combined Heat and Power (DCHP). This paper uses computational fluid dynamics (CFD) to investigate a recuperator design based on a helically coiled pipe-in-pipe heat exchanger which utilises industry standard stock materials and manufacturing techniques. A suitable mesh strategy was established by geometrically modelling separate boundary layer volumes to satisfy y + near wall conditions. A higher mesh density was then used to resolve the core flow. A coiled pipe-in-pipe recuperator solution for a 1 kW MGT DCHP unit was established within the volume envelope suitable for a domestic wall-hung boiler. Using a low MGT pressure ratio (necessitated by using a turbocharger oil cooled journal bearing platform) meant unit size was larger than anticipated. Raising MGT pressure ratio from 2.15 to 2.5 could significantly reduce recuperator volume. Dimensional reasoning confirmed the existence of optimum pipe diameter combinations for minimum pressure drop. Maximum heat exchanger effectiveness was achieved using an optimum or minimum pressure drop pipe combination with large pipe length as opposed to a large pressure drop pipe combination with shorter pipe length. © 2011 Elsevier Ltd. All rights reserved.