9 resultados para lath martensite

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A general investigation was performed, in an industrial environment, of the major types of defect specific to investment castings in steel. As a result of this work three types of metallurgical defect were selected for further study. In the first of these, defects in austenitic stainless steel castings were found to result from deoxidation by-products. As a result of metallographic investigation and the statistical analysis of experimental data, evidence was found to support the hypothesis that the other two classes of defects - in martensite stainless and low alloy steels -both resulted from internal or grain boundary oxidation of the chromium alloy constituent This was often found to be followed by reaction between the metal oxides and the ceramic mould material. On the basis of this study, proposals are made for a more fundamental investigation of the mechanisms involved and interim suggestions are given for methods of ameliorating the effect in an industrial situation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years dual phase steels comprising of 5-20% martensite in a ferrite matrix have come into the limelight of high strength cold formable steels because of their potential for vehicle weight saving. They show the following features: no yield point; relatively low initial flow stress; high initial workhardening rate; well sustained work hardening. As a consequence of these characteristics, dual phase steels exhibit a better combination of strength and elongation than other HSLA steels. In this thesis, a broad view of the factors which influence their properties is presented. Mechanical properties and forming ability of a commercially available dual phase steel and an AL-Si killed steel processed to dual phase form are investigated to ascertain the effect of their microstructure on their properties. It is found that the yield phenomena are masked by the transformation induced stresses present during processing and so yield point could be recovered under suitable ageing treatment; that apart from giving the above properties dual phasing gives rise to very low strain-rate sensitivity and a low R value ~ 1; that the mechanical response under rolling conditions is not different from those under tension; that there is a danger of damage to tooling during forming operations of these steels if fracture should precede instability as a result of grain size dependent strength found for these steels. It is also found that very little deformation of the martensite islands took place during deformation except at high strains. The work-hardening and the strength levels can be controlled by either decreasing the grain size or increasing the martensite volume fraction, but it is found that increasing martensite has a detrimental effect on ductility and the ductility and fracture strength can be controlled better by refining the grain size. A remarkable effect found in the dual phase steel tested is that the compressive strength is higher than the tensile strength. The reason for this observation is not yet clear but it is suggested that it might be due to the introduction of emissary type dislocations into the ferrite lattice as a result of twins formed in the martensite during transformation from austenite. The twins are envisaged to be {111} <112> in character.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The wear behaviour of a series of chromium containing white irons has been investigated under conditions of high stress grinding abrasion using a specimen on track abrasion testing machine. The measured abrasion resistance of the irons has been explained in terms of microstructure and hardness and with respect to the wear damage observed at and beneath abraded surfaces. During abrasion material removal occurred by cracking and detachment from the matrix of eutectic carbides as well as by penetration and micromachining effects of the abrasive grits being crushed at the wearing surface. Under the particular test conditions used martensitic matrix structures gave higher resistance to abrasion than austenitic or pearlitic. However, no simple relationship was found between general hardness or matrix microhardness at wear surfaces and abrasion resistance, and the test yielded pessimistic results for austenitic irons. The fine structures of the 15% Cr and 30% Cr alloys were studied by thin foil transmission electron microscopy. It was found that both the matrix and carbide constituents could be thinned for examination at 100 Kv using conventional dishing followed by ion beam thinning. Flany of the rodlike eutectic N7C3 carbides were seen to consist of clusters of scalier rods with individual 117C3 crystals quite often containing central cores of matrix constituent. 3oth eutectic and secondary N7C3 carbides were found to contain stacking faults on planes normal to the basal plane. In the eutectic carbides in the 30A Cr iron there was evidence of an in-situ PI7C3 C. transition which had taken place during the hardening heat treatment of this alloy. In the as-cast austenitic matrix iron strain induced martensite was produced at the wear surface contributing to work hardening. The significance of these findings have been discussed in relation to wear performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pulsed Nd:YAG has been adopted successfully in welding process of thin (0.7 mm) Ti6Al4V. Laser welding of such thin sheet requires a small focal spot, good laser beam quality and fast travel speed, since too much heat generation can cause distortion for thin sheet weld. The microstructures of Ti6Al4V were complex and strongly affected the mechanical properties. These structures include: a´ martensite, metastable ß, Widmanstätten, bimodal, lamellar and equiaxed microstructure. Bimodal and Widmanstätten structures exhibit a good-balance between strength and ductility. The microstructure of pulsed Nd:YAG welded Ti6Al4V was primarily a´ martensite, which showed the lowest ductility but not significantly high strength. A heat treatment at 950 followed by furnace cooling can transform the microstructure in the weld from a´ martensite structure into Widmanstätten structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fracture properties of a series of alloys containing 15% chromium and 0.8 to 3.4% carbon are investigated using strain fracture toughness testing techniques. The object of the work is to apply a quantitative method of measuring toughness to abrasion resistant materials, which have previously been assessed on an empirical basis; and to examine the relationship between microstructure and K10 in an attempt to improve the toughness of inherently brittle materials. A review of the relevant literature includes discussion of the background to the alloy series under investigation, a survey of the development of fracture mechanics and the emergence of K10 as a toughness parameter. Metallurgical variables such as composition, heat treatment, grain size, and hot working are ???? to relate microstructure to toughness, and fractographic evidence is used to substantiate the findings. The results are applied to a model correlating ductile fracture with plastic strain instability, and the nucleation of voids. Strain induced martensite formation in austenitic structures is analysed in terms of the plastic energy dissipation mechanisms operating at the crack tip. Emphasis is placed on the lower carbon alloys in the series, and a composition put forward to optimise wear resistance and toughness. The properties of established competitive materials are compared to the proposed alloy on a toughness and cost basis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tensile, crack opening displacement (COD), blunt notch, and Charpy impact tests were used to investigate cleavage initiation in the intercritically reheated coarse-grained heat-affected zone (IC CG HAZ) of three steels. The steels were chosen to provide different distributions and morphologies of MA (high-carbon martensite with some retained austenite) particles within the IC CG HAZ structure. Observation of minimum impact toughness values for the IC CG HAZ was found to be associated with a particular microstructure containing a near-connected grain boundary network of blocky MA particles, the MA particles being significantly harder than the internal grain microstructure. The initiation mechanism for this structure was determined to be from a combination of an overlap of residual transformational induced stress fields, due to the formation of the MA particles, between two closely spaced particles and stress concentration effects resulting from debonding of the particles. © 1994 The Minerals, Metals and Materials Society, and ASM International.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pack aluminide coating is a useful method for conferring oxidation resistance on nickel-base superalloys. Nominally, these coatings have a matrix composed of a Ni-Al based B2-type phase (commonly denoted as Β). However, following high-temperature exposure in oxidative envi-ronments, aluminum is depleted from the coating. Aluminum depletion in turn, leads to de-stabilization of the Β phase, resulting in the formation of a characteristic lathlike Β-derivative microstructure. This article presents a transmission electron microscopy study of the formation of the lathlike Β-derivative microstructure using bulk nickel aluminides as model alloys. In the bulk nickel aluminides, the lathlike microstructure has been found to correspond to two distinct components: L10-type martensite and a new Β derivative. The new Β derivative is characterized and the conditions associated with the presence of this feature are identified and compared with those leading to the formation of the L10 martensitic phase. © 1995 The Minerals, Metals & Material Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High strength low alloy steels have been shown to be adversely affected by the existence of regions of poor impact toughness within the heat affected zone (HAZ) produced during multipass welding. One of these regions is the intercritically reheated coarse grained HAZ or intercritical zone. Since this region is generally narrow and discontinuous, of the order of 0.5 mm in width, weld simulators are often employed to produce a larger volume of uniform microstructure suitable for toughness assessment. The steel usedfor this study was a commercial quenched and tempered steel of 450 MN m -2 yield strength. Specimen blanks were subjected to a simulated welding cycle to produce a coarse grained structure of upper bainite during the first thermal cycle, followed by a second thermal cycle where the peak temperature T p2 was controlled. Charpy tests carried out for T p2 values in the range 650-850°C showed low toughness for T p2 values between 760 and 790°C, in the intercritical regime. Microstructural investigation of the development of grain boundary martensite-retained austenite (MA) phase has been coupled with image analysis to measure the volume fraction of MAformed. Most of the MA constituent appears at the prior austenite grain boundaries during intercritical heating, resulting in a 'necklace' appearance. For values of T p2 greater than 790°C the necklace appearance is lost and the second phase areas are observed throughout the structure. Concurrent with this is the development of the fine grained, predominantly ferritic structure that is associated with the improvement in toughness. At this stage the microstructure is transforming from the intercritical regime structure to the supercritically reheated coarse grained HAZ structure. The toughness improvement occurs even though the MA phase is still present, suggesting that the embrittlement is associated with the presence of a connected grain boundary network of the MA phase. The nature of the second phase particles can be controlled by the cooling rate during the second cycle and variesfrom MA phase at high cooling rates to a pearlitic structure at low cooling rates. The lowest toughness of the intercritical zone is observed only when MA phase is present. The reason suggested for this is that only the MA particles debond readily, a number of debonded particles in close proximity providing sufficient stress concentration to initiate local cleavage. © 1993 The Institute of Materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fatigue crack propagation behaviour of a low alloy, boron-containing steel has been examined after austenitizing at 900°C or 1250°C and tempering at a range of temperatures up to 400°C. Fatigue threshold values were found to vary with austenitizing and tempering treatment in a range between 3.3 to 6 MPa √m when tested at a stress ratio (R) of 0.2. Crack propagation rates in the Paris regime were insensitive to heat treatment variations. The crack propagation path was essentially transgranular in all conditions with small regions of intergranular facets appearing at growth rates around the knee of the da/dN vs ΔK curve. The crack front shape showed marked retardation in the centre of the specimen at low tempering temperatures. Experimental determinations and computer predictions of residual stress levels in the specimens indicated that this was due to a central residual compressive stress resulting from differential cooling rates and the volume change associated with the martensite transformation. The results are discussed in terms of microstructural and residual stress effects on fatigue behaviour. © 1987.