11 resultados para lateral skin friction of piles
em Aston University Research Archive
Resumo:
'I'he accurate rreasurement of bed shear stress has been extremely difficult due to its changing values until white propunded a theory which would give constant shear along the bed of a flume. In this investigation a flume has been designed according to White's theory and by two separate methods proven to give constant shearing force along the bed. The first method applied the Hydrogen Bubble Technique to obtain accurate values of velocity thus allowing the velocity profile to be plotted and the momentum at the various test sections to be calculated. The use of a 16 mm Beaulieu movie camera allowed the exact velocity profiles created by the hydrogen bubbles to be recorded whilst an analysing projector gave the means of calculating the exact velocities at the various test sections. Simultaneously Preston's technique of measuring skin friction using Pitot tubes was applied. Twc banks of open ended water manometer were used for recording the static and velocity head pressure drop along the flume. This tvpe of manometer eliminated air locks in the tubes and was found to be sufficiently accurate. Readings of pressure and velocity were taken for various types and diameters of bed material both natural sands and glass spheres and the results tabulated. Graphs of particle Reynolds Number against bed shear stress were plotted and gave a linear relationship which dropped off at high values of Reynolds number. It was found that bed movement occurred instantaneously along the bed of the flume once critical velocity had been reached. On completion of this test a roof curve inappropriate to the bed material was used and then the test repeated. The bed shearing stress was now no longer constant and yet bed movement started instantaneously along the bed of the flume, showing that there are more parameters than critical shear stress to bed movement. It is concluded from the two separate methods applied that the bed shear stress is constant along the bed of the flume.
Resumo:
Current evidence-based guidelines recommend that 2% (w/v) chlorhexidine digluconate (CHG), preferentially in 70% (v/v) isopropyl alcohol (IIPA), is used for skin antisepsis prior to incision of the skin. In this current study, the antimicrobial efficacy of CHG, six essential oils [tea tree oil (TTO), thymol, eucalyptus oil (EO), juniper oil, lavender oil and citronella] and novel benzylidenecarboxamidrazone and thiosemicarbazone compounds were determined against a panel of microorganisms commonly associated with skin infection (Staphylococcus epidermidis, S. aureus, meticillin-resistant S. aureus, Propionibacterium acnes, Acinetobacter spp., Pseudomonas aeruginosa and Candida albicans) The results demonstrated synergistic activity of CHG in combination with EO against biofilm cultures of S. epidermidis, with significantly reduced concentrations of CHG and EO required to inhibit biofilm growth compared to CHG or EO alone. Skin permeation of CHG was subsequently investigated using an in vitro human skin model (Franz cell) and the penetration profile was determined by serial sectioning of the full thickness human skin. Two percent (w/v) CHG in aqueous solution and in 70% (v/v) IPA demonstrated poor skin permeation; however, the skin permeation was significantly enhanced in combination with 5% - 50% (v/v) EO. Detectable levels of CHG did not permeate through full thickness skin in 24 h. Skin permeation of 2% (w/v) CHG in 70% (v/v) IPA in the presence of 10% (v/v) EO was subsequently studied. The results demonstrated a significantly enhanced skin penetration of CHG after a 2 min application, with CHG detected at significant levels to a depth of 600 m with CHG in combination with EO and IPA compared to 100 m with IPA alone. Combination antisepsis comprising CHG and EO may be beneficial for skin antisepsis prior to invasive procedures to reduce the number of microorganisms on and within the skin due to enhanced skin penetration of CHG and improved efficacy against S. epidermidis in a biofilm mode of growth.
Resumo:
The application of an antiserum to ultraviolet radiation (UVR)-damaged DNA is presented. A novel experimental system was employed to ascertain the limits of detection for this antiserum. Using a DNA standard containing a known amount of dimer, the limits of detection were found to be 0.9 fmol of dimer. This was compared to a limit of 20-50 fmol dimer using gas chromatography-mass spectrometry (GC-MS). Induction of thymine dimers in DNA following UVR exposure, as assessed using this antiserum in an enzyme-linked immunosorbent assay (ELISA), was compared with GC-MS measurements. The ELISA method successfully demonstrated the induction of lesions in DNA irradiated either with UVC or UVB, although despite high sensitivity, no discernible binding was seen to UVA-irradiated DNA. The antiserum was also shown to be applicable to immunocytochemistry, localising damage in the nuclei of UVR exposed keratinocytes in culture. The ability of the antiserum to detect DNA damage in skin biopsies of individuals exposed to sub-erythemal doses of UVR was also demonstrated. Moreover, the subsequent removal of this damage, as evidenced by a reduction in antiserum staining, was noted in sections of biopsies taken in the hours following irradiation. © 2003 Elsevier B.V. All rights reserved.
Resumo:
Background Chlorhexidine digluconate (CHG) is a widely used skin antiseptic, however it poorly penetrates the skin, limiting its efficacy against microorganisms residing beneath the surface layers of skin. The aim of the current study was to improve the delivery of chlorhexidine digluconate (CHG) when used as a skin antiseptic. Method Chlorhexidine was applied to the surface of donor skin and its penetration and retention under different conditions was evaluated. Skin penetration studies were performed on full-thickness donor human skin using a Franz diffusion cell system. Skin was exposed to 2% (w/v) CHG in various concentrations of eucalyptus oil (EO) and 70% (v/v) isopropyl alcohol (IPA). The concentration of CHG (µg/mg of skin) was determined to a skin depth of 1500 µm by high performance liquid chromatography (HPLC). Results The 2% (w/v) CHG penetration into the lower layers of skin was significantly enhanced in the presence of EO. Ten percent (v/v) EO in combination with 2% (w/v) CHG in 70% (v/v) IPA significantly increased the amount of CHG which penetrated into the skin within 2 min. Conclusion The delivery of CHG into the epidermis and dermis can be enhanced by combination with EO, which in turn may improve biocide.
Resumo:
A fundamental if poorly understood problem that hydrogels display is the tendency of these contact lens materials to dehydrate, causing certain complications of the corneal epithelium. However, recent studies have indicated that the evaporation rate of water from different hydrogel lenses is the same and the severity of conditions such as corneal staining is controlled by the states of water in the material. A study was therefore undertaken which concluded that increased corneal desiccating staining occurred as the proportion of water existing in the bound state decreased. The possibility of using dehydrated hydrogels as packaging materials with desiccating properties has also been investigated. As hydrogels have a high affinity for water they have adequate ability to function as a moisture scavenger in an enclosed atmosphere. It was concluded that this ability is maximised by a high total water content and an increase in the proportion of this water existing in the bound state for the material when it is fully hydrated. N-vinyl pyrrolidone has a low reactivity in vinyl polymerisation reactions which results in polymers with local domains of the same chemical type which can lead to deposition. As contact lenses comprising of this monomer are susceptible to deposition, a monomer with a higher reactivity in vinyl polymerisations is acryloylmorpholine and its incorporation in favour of NVP is encouraged. Unfortunately a large proportion of high EWC hydrogels are mechanically weak and attempts to increase this property by increasing hydrophobicity or cross-linking results in a decrease in EWC. Monomers with the potential to carry a positive charge were incorporated into a high EWC, AMO-HEMA copolymer and the physical properties were investigated. Although EWC increased, mechanical properties decreased only slightly. Therefore simultaneous incorporation of a positively charged monomer and a negatively charged monomer was investigated. The resulting copolymers showed increased water content and increased initial modulus. A technique for measuring the coefficient of friction of contact lenses during lubrication has been developed.
Resumo:
Contrary to previously held beliefs, it is now known that bacteria exist not only on the surface of the skin but they are also distributed at varying depths beneath the skin surface. Hence, in order to sterilise the skin, antimicrobial agents are required to penetrate across the skin and eliminate the bacteria residing at all depths. Chlorhexidine is an antimicrobial agent with the widest use for skin sterilisation. However, due to its poor permeation rate across the skin, sterilisation of the skin cannot be achieved and, therefore, the remaining bacteria can act as a source of infection during an operation or insertion of catheters. The underlying theme of this study is to enhance the permeation of this antimicrobial agent in the skin by employing chemical (enhancers and supersaturated systems) or physical (iontophoresis) techniques. The hydrochloride salt of chlorhexidine (CHX), a poorly soluble salt, was used throughout this study. The effect of ionisation on in vitro permeation rate across the excised human epidennis was investigated using Franz-type diffusion cells. Saturated solutions of CHX were used as donor and the variable studied was vehicle pH. Permeation rate was increased with increasing vehicle pH. The pH effect was not related to the level of ionisation of the drug. The effect of donor vehicle was also studied using saturated solutions of CHX in 10% and 20% ethanol as the donor solutions. Permeation of CHX was enhanced by increasing the concentration of ethanol which could be due to the higher concentration of CHX in the donor phase and the effect of ethanol itself on the membrane. The interplay between drug diffusion and enhancer pretreatment of the epidennis was studied. Pretreatment of the membrane with 10% Azone/PG demonstrated the highest diffusion rate followed by 10% olcic acid/PG pretreatment compared to other pretreatment regimens (ethanol, dimethyl sulfoxide (DMSO), propylene glycol (PG), sodium dodecyl sulphate (SDS) and dodecyl trimethyl ammonium bromide (DT AB). Differential Scanning Calorimetry (DSC) was also employed to study the mode of action of these enhancers. The potential of supersaturated solutions in enhancing percutaneous absorption of CHX was investigated. Various anti-nucleating polymers were screened in order to establish the most effective agent. Polyvinylpyrrolidone (PVP, K30) was found to be a better candidate than its lower molecular weight counterpart (K25) and hydroxypropyl methyleellulose (HPMC). The permeation studies showed an increase in diffusion rate by increasing the degree of saturation. Iontophoresis is a physical means of transdemal drug delivery enhancement that causes an increased penetration of molecules into or through the skin by the application of an electric field. This technique was employed in conjunction with chemical enhancers to assess the effect on CHX permeation across the human epidermis. An improved transport of CHX, which was pH dependant was observed upon application of the current. Combined use of iontophoresis and chemical enhancers further increased the CHX transport indicating a synergistic effect. Pretreatment of the membrane with 10% Azone/PG demonstrated the greatest effect.
Resumo:
Azidoprofen {2-(4-azidophenyl)propionic acid; AZP}, an azido-substituted arylalkanoic acid, was investigated as a model soft drug candidate for a potential topical non-steroidal anti-inflammatory agent (NSAIA). Reversed-phase high performance liquid chromatography (HPLC) methods were developed for the assay of AZP, a series of ester analogues and their· degradation products. 1H-NMR spectroscopy was also employed as an analytical method in selected cases. Reduction of the azido-group to the corresponding amine has been proposed as a potential detoxification mechanism for compounds bearing this substituent. An in vitro assay to measure the susceptibility of azides towards reduction was developed using dithiothreitol as a model reducing agent. The rate of reduction of AZP was found to be base-dependent, hence supporting the postulated mechanism of thiol-mediated reduction via nucleophilic attack by the thiolate anion. Prodrugs may enhance topical bioavailability through the manipulation of physico-chemical properties of the parent drug. A series of ester derivatives of AZP were investigated for their susceptibility to chemical and enzymatic hydrolysis, which regenerates the parent acid. Use of alcoholic cosolvents with differing alkyl functions to that of the ester resulted in transesterification reactions, which were found to be enzyme-mediated. The skin penetration of AZP was assessed using an in vitro hairless mouse skin model, and silastic membrane in some cases. The rate of permeation of AZP was found to be a similar magnitude to that of the well established NSAIA ibuprofen. Penetration rates were dependent on the vehicle pH and drug concentration when solutions were employed. In contrast, flux was independent of pH when suspension formulations were used. Pretreatment of the skin with various enhancer regimes, including oleic acid and azone in propylene glycol, promoted the penetration of AZP. An intense IR absorption due to the azide group serves as a highly diagnostic marker, enabling azido compounds to be detected in the outer layers of the· stratum corneum following their application to skin, using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). This novel application enabled a non-invasive examination of the percutaneous penetration enhancement of a model azido compound in vivo in man, in the presence of the enhancer oleic acid.
Resumo:
The margins of foliose lichen thalli comprise individual lobes which grow radially and divide. This results in a complex marginal structure in which lobes differing in morphology, state of division, and growth pattern are crowded together. Various aspects of the biology of these lobes are reviewed including their carbohydrate supply, morphology, pattern of division and branching, the effect of lobe overcrowding and interactions between neighbouring lobes. As the thalus grows, lobes become increasingly crowded together and this restricts further lateral growth. Restriction of lobe width may be reponsible for the changes in radial growth rate (RGR) with size observed in foliose species. Various aspects of lobe biology may be responsible for lobe growth variation including the physical independence of lobes from their neighbours, the genetic origin of the lobes, and the pattern of lobe branching. Overall symmetry of a thallus is maintained by a fluctuating pattern of growth of individual lobes in successive months together with competition for space at the margin
Resumo:
Non-linear solutions and studies of their stability are presented for flows in a homogeneously heated fluid layer under the influence of a constant pressure gradient or when the mass flux across any lateral cross-section of the channel is required to vanish. The critical Grashof number is determined by a linear stability analysis of the basic state which depends only on the z-coordinate perpendicular to the boundary. Bifurcating longitudinal rolls as well as secondary solutions depending on the streamwise x-coordinate are investigated and their amplitudes are determined as functions of the supercritical Grashof number for various Prandtl numbers and angles of inclination of the layer. Solutions that emerge from a Hopf bifurcation assume the form of propagating waves and can thus be considered as steady flows relative to an appropriately moving frame of reference. The stability of these solutions with respect to three-dimensional disturbances is also analyzed in order to identify possible bifurcation points for evolving tertiary flows.
Resumo:
The lipophilic dihydrofolate reductase (DHFR) inhibitor m-azidopyrimethamine (MZP) was investigated for suitability for development as a topical antipsoriatic agent. The clinical features and treatments for psoriasis were reviewed. High performance liquid chromatography (HPLC) was employed as the main analytical method, with UV spectroscopy being used in some cases. Reduction of the azido-group was proposed as a potential detoxification mechanism for MZP. The rates of reduction of a series of substituted phenyl azide compounds by dithiothreitol were investigated and found to depend on the substitution pattern of the aryl azide molecular, with electron deficient azides exhibiting faster rates of reduction in the system studied. The rates of reduction of MZP and analogous compounds were also studied using this model. The skin penetration of MZP was assessed using an in vitro hairless mouse skin model. The rate of permeation (flux) of MZP across hairless mouse skin was found to be dependent on the quantity of propylene glycol used as cosolvent in the vehicle and the pH. The use of a pretreatment regime of oleic acid in propylene glycol was shown to greatly increase the penetration of MZP through the hairless mouse skin as compared to application without pretreatment, or pretreatment with other penetration enhancers. The metabolism of MZP was studied in in vitro models comprising skin homogenates, SV-K14 human keratinocyte cell cultures and skin commensal bacterial cultures. No conversion of MZP to the corresponding amine was detected in any of the models. The growth inhibitory properties of MZP were investigated in an in vitro SV-K14 human keratinocyte cell culture model and compared with those of other DHFR inhibitors. [14C]-pyrimethamine was shown to be taken up by the SV-K14 keratinocytes.
Resumo:
Opto-acoustic imaging is a growing field of research in recent years, providing functional imaging of physiological biomarkers, such as the oxygenation of haemoglobin. Piezo electric transducers are the industry standard detector for ultrasonics, but their limited bandwidth, susceptibility to electromagnetic interference and their inversely proportional sensitivity to size all affect the detector performance. Sensors based on polymer optical fibres (POF) are immune to electromagnetic interference, have lower acoustic impedance and a reduced Young's Modulus compared to silica fibres. Furthermore, POF enables the possibility of a wideband sensor and a size appropriate to endoscopy. Micro-structured POF (mPOF) used in an interferometric detector has been shown to be an order of magnitude more sensitive than silica fibre at 1 MHz and 3 times more sensitive at 10 MHz. We present the first opto-acoustic measurements obtained using a 4.7mm PMMA mPOF Bragg grating with a fibre diameter of 130 μm and present the lateral directivity pattern of a PMMA mPOF FBG ultrasound sensor over a frequency range of 1-50 MHz. We discuss the impact of the pattern with respect to the targeted application and draw conclusions on how to mitigate the problems encountered.