37 resultados para large-scale network
em Aston University Research Archive
Resumo:
Data Envelopment Analysis (DEA) is one of the most widely used methods in the measurement of the efficiency and productivity of Decision Making Units (DMUs). DEA for a large dataset with many inputs/outputs would require huge computer resources in terms of memory and CPU time. This paper proposes a neural network back-propagation Data Envelopment Analysis to address this problem for the very large scale datasets now emerging in practice. Neural network requirements for computer memory and CPU time are far less than that needed by conventional DEA methods and can therefore be a useful tool in measuring the efficiency of large datasets. Finally, the back-propagation DEA algorithm is applied to five large datasets and compared with the results obtained by conventional DEA.
Resumo:
Data envelopment analysis (DEA) is the most widely used methods for measuring the efficiency and productivity of decision-making units (DMUs). The need for huge computer resources in terms of memory and CPU time in DEA is inevitable for a large-scale data set, especially with negative measures. In recent years, wide ranges of studies have been conducted in the area of artificial neural network and DEA combined methods. In this study, a supervised feed-forward neural network is proposed to evaluate the efficiency and productivity of large-scale data sets with negative values in contrast to the corresponding DEA method. Results indicate that the proposed network has some computational advantages over the corresponding DEA models; therefore, it can be considered as a useful tool for measuring the efficiency of DMUs with (large-scale) negative data.
Resumo:
This thesis introduces and develops a novel real-time predictive maintenance system to estimate the machine system parameters using the motion current signature. Recently, motion current signature analysis has been addressed as an alternative to the use of sensors for monitoring internal faults of a motor. A maintenance system based upon the analysis of motion current signature avoids the need for the implementation and maintenance of expensive motion sensing technology. By developing nonlinear dynamical analysis for motion current signature, the research described in this thesis implements a novel real-time predictive maintenance system for current and future manufacturing machine systems. A crucial concept underpinning this project is that the motion current signature contains information relating to the machine system parameters and that this information can be extracted using nonlinear mapping techniques, such as neural networks. Towards this end, a proof of concept procedure is performed, which substantiates this concept. A simulation model, TuneLearn, is developed to simulate the large amount of training data required by the neural network approach. Statistical validation and verification of the model is performed to ascertain confidence in the simulated motion current signature. Validation experiment concludes that, although, the simulation model generates a good macro-dynamical mapping of the motion current signature, it fails to accurately map the micro-dynamical structure due to the lack of knowledge regarding performance of higher order and nonlinear factors, such as backlash and compliance. Failure of the simulation model to determine the micro-dynamical structure suggests the presence of nonlinearity in the motion current signature. This motivated us to perform surrogate data testing for nonlinearity in the motion current signature. Results confirm the presence of nonlinearity in the motion current signature, thereby, motivating the use of nonlinear techniques for further analysis. Outcomes of the experiment show that nonlinear noise reduction combined with the linear reverse algorithm offers precise machine system parameter estimation using the motion current signature for the implementation of the real-time predictive maintenance system. Finally, a linear reverse algorithm, BJEST, is developed and applied to the motion current signature to estimate the machine system parameters.
Resumo:
Large-scale massively parallel molecular dynamics (MD) simulations of the human class I major histo-compatibility complex (MHC) protein HLA-A*0201 bound to a decameric tumor-specific antigenic peptide GVY-DGREHTV were performed using a scalable MD code on high-performance computing platforms. Such computational capabilities put us in reach of simulations of various scales and complexities. The supercomputing resources available Large-scale massively parallel molecular dynamics (MD) simulations of the human class I major histocompatibility complex (MHC) protein HLA-A*0201 bound to a decameric tumor-specific antigenic peptide GVYDGREHTV were performed using a scalable MD code on high-performance computing platforms. Such computational capabilities put us in reach of simulations of various scales and complexities. The supercomputing resources available for this study allow us to compare directly differences in the behavior of very large molecular models; in this case, the entire extracellular portion of the peptide–MHC complex vs. the isolated peptide binding domain. Comparison of the results from the partial and the whole system simulations indicates that the peptide is less tightly bound in the partial system than in the whole system. From a detailed study of conformations, solvent-accessible surface area, the nature of the water network structure, and the binding energies, we conclude that, when considering the conformation of the α1–α2 domain, the α3 and β2m domains cannot be neglected. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 1803–1813, 2004
Resumo:
This chapter discusses network protection of high-voltage direct current (HVDC) transmission systems for large-scale offshore wind farms where the HVDC system utilizes voltage-source converters. The multi-terminal HVDC network topology and protection allocation and configuration are discussed with DC circuit breaker and protection relay configurations studied for different fault conditions. A detailed protection scheme is designed with a solution that does not require relay communication. Advanced understanding of protection system design and operation is necessary for reliable and safe operation of the meshed HVDC system under fault conditions. Meshed-HVDC systems are important as they will be used to interconnect large-scale offshore wind generation projects. Offshore wind generation is growing rapidly and offers a means of securing energy supply and addressing emissions targets whilst minimising community impacts. There are ambitious plans concerning such projects in Europe and in the Asia-Pacific region which will all require a reliable yet economic system to generate, collect, and transmit electrical power from renewable resources. Collective offshore wind farms are efficient and have potential as a significant low-carbon energy source. However, this requires a reliable collection and transmission system. Offshore wind power generation is a relatively new area and lacks systematic analysis of faults and associated operational experience to enhance further development. Appropriate fault protection schemes are required and this chapter highlights the process of developing and assessing such schemes. The chapter illustrates the basic meshed topology, identifies the need for distance evaluation, and appropriate cable models, then details the design and operation of the protection scheme with simulation results used to illustrate operation. © Springer Science+Business Media Singapore 2014.
Resumo:
In this thesis patterns of working hours in large-scale grocery retailing in Britain and France are compared. The research is carried out using cross-national comparative methodology, and the analysis is based on information derived from secondary sources and empirical research in large-scale grocery retailing involving employers and trade unions at industry level and case studies at outlet level. The thesis begins by comparing national patterns of working hours in Britain and France over the post-war period. Subsequently, a detailed comparison of working hours in large-scale grocery retailing in Britain and France is carried out through the analysis of secondary sources and empirical data. Emphasis is placed on analyzing part-time working hours. They are contrasted and compared at national level and explained in terms of supply and demand factors. The relationships between the structuring of, and satisfaction with, working hours and factors determining women's integration in the workforce in Britain and France are investigated. Part-time hours are then compared and contrasted in large-scale grocery retailing in the context of the analysis of working hours. The relationship between the structuring of working hours and satisfaction with them is examined in both countries through research with women part-timers in case study outlets. The cross-national comparative methodology is used to examine whether dissimilar national contexts in Britain and France have led to different patterns of working hours in large-scale grocery retailing. The principal conclusion is that significant differences are found in the length, organization and flexibility of working hours and that these differences can be attributed to dissimilar socio-economic, political, and cultural contexts in the two countries.
Resumo:
T-cell activation requires interaction of T-cell receptors (TCR) with peptide epitopes bound by major histocompatibility complex (MHC) proteins. This interaction occurs at a special cell-cell junction known as the immune or immunological synapse. Fluorescence microscopy has shown that the interplay among one agonist peptide-MHC (pMHC), one TCR and one CD4 provides the minimum complexity needed to trigger transient calcium signalling. We describe a computational approach to the study of the immune synapse. Using molecular dynamics simulation, we report here on a study of the smallest viable model, a TCR-pMHC-CD4 complex in a membrane environment. The computed structural and thermodynamic properties are in fair agreement with experiment. A number of biomolecules participate in the formation of the immunological synapse. Multi-scale molecular dynamics simulations may be the best opportunity we have to reach a full understanding of this remarkable supra-macromolecular event at a cell-cell junction.
Resumo:
In this paper, we study the localization problem in large-scale Underwater Wireless Sensor Networks (UWSNs). Unlike in the terrestrial positioning, the global positioning system (GPS) can not work efficiently underwater. The limited bandwidth, the severely impaired channel and the cost of underwater equipment all makes the localization problem very challenging. Most current localization schemes are not well suitable for deep underwater environment. We propose a hierarchical localization scheme to address the challenging problems. The new scheme mainly consists of four types of nodes, which are surface buoys, Detachable Elevator Transceivers (DETs), anchor nodes and ordinary nodes. Surface buoy is assumed to be equipped with GPS on the water surface. A DET is attached to a surface buoy and can rise and down to broadcast its position. The anchor nodes can compute their positions based on the position information from the DETs and the measurements of distance to the DETs. The hierarchical localization scheme is scalable, and can be used to make balances on the cost and localization accuracy. Initial simulation results show the advantages of our proposed scheme. © 2009 IEEE.
Resumo:
In this paper, we study an area localization problem in large scale Underwater Wireless Sensor Networks (UWSNs). The limited bandwidth, the severely impaired channel and the cost of underwater equipment all makes the underwater localization problem very challenging. Exact localization is very difficult for UWSNs in deep underwater environment. We propose a Mobile DETs based efficient 3D multi-power Area Localization Scheme (3D-MALS) to address the challenging problem. In the proposed scheme, the ideas of 2D multi-power Area Localization Scheme(2D-ALS) [6] and utilizing Detachable Elevator Transceiver (DET) are used to achieve the simplicity, location accuracy, scalability and low cost performances. The DET can rise and down to broadcast its position. And it is assumed that all the underwater nodes underwater have pressure sensors and know their z coordinates. The simulation results show that our proposed scheme is very efficient. © 2009 IEEE.