4 resultados para large vector autoregression
em Aston University Research Archive
Resumo:
The purpose of this thesis is to shed more light in the FX market microstructure by examining the determinants of bid-ask spread for three currencies pairs, the US dollar/Japanese yen, the British pound/US dollar and the Euro/US dollar in different time zones. I examine the commonality in liquidity with the elaboration of FX market microstructure variables in financial centres across the world (New York, London, Tokyo) based on the quotes of three exchange rate currency pairs over a ten-year period. I use GARCH (1,1) specifications, ICSS algorithm, and vector autoregression analysis to examine the effect of trading activity, exchange rate volatility and inventory holding costs on both quoted and relative spreads. ICSS algorithm results show that intraday spread series are much less volatile compared to the intraday exchange rate series as the number of change points obtained from ICSS algorithm is considerably lower. GARCH (1,1) estimation results of daily and intraday bid-ask spreads, show that the explanatory variables work better when I use higher frequency data (intraday results) however, their explanatory power is significantly lower compared to the results based on the daily sample. This suggests that although daily spreads and intraday spreads have some common determinants there are other factors that determine the behaviour of spreads at high frequencies. VAR results show that there are some differences in the behaviour of the variables at high frequencies compared to the results from the daily sample. A shock in the number of quote revisions has more effect on the spread when short term trading intervals are considered (intra-day) compared to its own shocks. When longer trading intervals are considered (daily) then the shocks in the spread have more effect on the future spread. In other words, trading activity is more informative about the future spread when intra-day trading is considered while past spread is more informative about the future spread when daily trading is considered
Resumo:
We apply methods of Statistical Mechanics to study the generalization performance of Support vector Machines in large data spaces.
Resumo:
Large-scale mechanical products, such as aircraft and rockets, consist of large numbers of small components, which introduce additional difficulty for assembly accuracy and error estimation. Planar surfaces as key product characteristics are usually utilised for positioning small components in the assembly process. This paper focuses on assembly accuracy analysis of small components with planar surfaces in large-scale volume products. To evaluate the accuracy of the assembly system, an error propagation model for measurement error and fixture error is proposed, based on the assumption that all errors are normally distributed. In this model, the general coordinate vector is adopted to represent the position of the components. The error transmission functions are simplified into a linear model, and the coordinates of the reference points are composed by theoretical value and random error. The installation of a Head-Up Display is taken as an example to analyse the assembly error of small components based on the propagation model. The result shows that the final coordination accuracy is mainly determined by measurement error of the planar surface in small components. To reduce the uncertainty of the plane measurement, an evaluation index of measurement strategy is presented. This index reflects the distribution of the sampling point set and can be calculated by an inertia moment matrix. Finally, a practical application is introduced for validating the evaluation index.
Resumo:
Support Vector Machines (SVMs) are widely used classifiers for detecting physiological patterns in Human-Computer Interaction (HCI). Their success is due to their versatility, robustness and large availability of free dedicated toolboxes. Frequently in the literature, insufficient details about the SVM implementation and/or parameters selection are reported, making it impossible to reproduce study analysis and results. In order to perform an optimized classification and report a proper description of the results, it is necessary to have a comprehensive critical overview of the application of SVM. The aim of this paper is to provide a review of the usage of SVM in the determination of brain and muscle patterns for HCI, by focusing on electroencephalography (EEG) and electromyography (EMG) techniques. In particular, an overview of the basic principles of SVM theory is outlined, together with a description of several relevant literature implementations. Furthermore, details concerning reviewed papers are listed in tables, and statistics of SVM use in the literature are presented. Suitability of SVM for HCI is discussed and critical comparisons with other classifiers are reported.