2 resultados para large infrastructure
em Aston University Research Archive
Resumo:
This research develops a methodology and model formulation which suggests locations for rapid chargers to help assist infrastructure development and enable greater battery electric vehicle (BEV) usage. The model considers the likely travel patterns of BEVs and their subsequent charging demands across a large road network, where no prior candidate site information is required. Using a GIS-based methodology, polygons are constructed which represent the charging demand zones for particular routes across a real-world road network. The use of polygons allows the maximum number of charging combinations to be considered whilst limiting the input intensity needed for the model. Further polygons are added to represent deviation possibilities, meaning that placement of charge points away from the shortest path is possible, given a penalty function. A validation of the model is carried out by assessing the expected demand at current rapid charging locations and comparing to recorded empirical usage data. Results suggest that the developed model provides a good approximation to real world observations, and that for the provision of charging, location matters. The model is also implemented where no prior candidate site information is required. As such, locations are chosen based on the weighted overlay between several different routes where BEV journeys may be expected. In doing so many locations, or types of locations, could be compared against one another and then analysed in relation to siting practicalities, such as cost, land permission and infrastructure availability. Results show that efficient facility location, given numerous siting possibilities across a large road network can be achieved. Slight improvements to the standard greedy adding technique are made by adding combination weightings which aim to reward important long distance routes that require more than one charge to complete.
Resumo:
To benefit from the advantages that Cloud Computing brings to the IT industry, management policies must be implemented as a part of the operation of the Cloud. Among others, for example, the specification of policies can be used for the management of energy to reduce the cost of running the IT system or also for security policies while handling privacy issues of users. As cloud platforms are large, manual enforcement of policies is not scalable. Hence, autonomic approaches for management policies have recently received a considerable attention. These approaches allow specification of rules that are executed via rule-engines. The process of rules creation starts by the interpretation of the policies drafted by high-rank managers. Then, technical IT staff translate such policies to operational activities to implement them. Such process can start from a textual declarative description and after numerous steps terminates in a set of rules to be executed on a rule engine. To simplify the steps and to bridge the considerable gap between the declarative policies and executable rules, we propose a domain-specific language called CloudMPL. We also design a method of automated transformation of the rules captured in CloudMPL to the popular rule-engine Drools. As the policies are changed over time, code generation will reduce the time required for the implementation of the policies. In addition, using a declarative language for writing the specifications is expected to make the authoring of rules easier. We demonstrate the use of the CloudMPL language into a running example extracted from a management energy consumption case study.