18 resultados para lab-on-a-chip systems
em Aston University Research Archive
Resumo:
Immunoprecipitation (IP) is one of the most widely used and selective techniques for protein purification. Here, a miniaturised, polymer-supported immunoprecipitation (µIP) method for the on-chip purification of proteins from complex mixtures is described. A 4 µl PDMS column functionalised with covalently bound antibodies was created and all critical aspects of the µIP protocol (antibody immobilisation, blocking of potential non-specific adsorption sites, sample incubation and washing conditions) were assessed and optimised. The optimised µIP method was used to obtain purified fractions of affinity-tagged protein from a bacterial lysate.
Resumo:
Nanoparticles offer an ideal platform for the delivery of small molecule drugs, subunit vaccines and genetic constructs. Besides the necessity of a homogenous size distribution, defined loading efficiencies and reasonable production and development costs, one of the major bottlenecks in translating nanoparticles into clinical application is the need for rapid, robust and reproducible development techniques. Within this thesis, microfluidic methods were investigated for the manufacturing, drug or protein loading and purification of pharmaceutically relevant nanoparticles. Initially, methods to prepare small liposomes were evaluated and compared to a microfluidics-directed nanoprecipitation method. To support the implementation of statistical process control, design of experiment models aided the process robustness and validation for the methods investigated and gave an initial overview of the size ranges obtainable in each method whilst evaluating advantages and disadvantages of each method. The lab-on-a-chip system resulted in a high-throughput vesicle manufacturing, enabling a rapid process and a high degree of process control. To further investigate this method, cationic low transition temperature lipids, cationic bola-amphiphiles with delocalized charge centers, neutral lipids and polymers were used in the microfluidics-directed nanoprecipitation method to formulate vesicles. Whereas the total flow rate (TFR) and the ratio of solvent to aqueous stream (flow rate ratio, FRR) was shown to be influential for controlling the vesicle size in high transition temperature lipids, the factor FRR was found the most influential factor controlling the size of vesicles consisting of low transition temperature lipids and polymer-based nanoparticles. The biological activity of the resulting constructs was confirmed by an invitro transfection of pDNA constructs using cationic nanoprecipitated vesicles. Design of experiments and multivariate data analysis revealed the mathematical relationship and significance of the factors TFR and FRR in the microfluidics process to the liposome size, polydispersity and transfection efficiency. Multivariate tools were used to cluster and predict specific in-vivo immune responses dependent on key liposome adjuvant characteristics upon delivery a tuberculosis antigen in a vaccine candidate. The addition of a low solubility model drug (propofol) in the nanoprecipitation method resulted in a significantly higher solubilisation of the drug within the liposomal bilayer, compared to the control method. The microfluidics method underwent scale-up work by increasing the channel diameter and parallelisation of the mixers in a planar way, resulting in an overall 40-fold increase in throughput. Furthermore, microfluidic tools were developed based on a microfluidics-directed tangential flow filtration, which allowed for a continuous manufacturing, purification and concentration of liposomal drug products.
Resumo:
Based on a Belief-Action-Outcome framework, we produced a model that shows senior managers' perception of both the antecedents to and the consequences of Green IS adoption by a firm. This conceptual model and its associated hypotheses were empirically tested using a dataset generated from a survey of 405 organizations. The results suggest that coercive pressure influences the attitude toward Green IS adoption while mimetic pressure does not. In addition, we found that there was a significant relationship between Green IS adoption, attitude, and consideration of future consequences. Finally, we found that only long term Green IS adoption was positively related to environmental performance. © 2013 Elsevier B.V.
Resumo:
Besides their well-described use as delivery systems for water-soluble drugs, liposomes have the ability to act as a solubilizing agent for drugs with low aqueous solubility. However, a key limitation in exploiting liposome technology is the availability of scalable, low-cost production methods for the preparation of liposomes. Here we describe a new method, using microfluidics, to prepare liposomal solubilising systems which can incorporate low solubility drugs (in this case propofol). The setup, based on a chaotic advection micromixer, showed high drug loading (41 mol%) of propofol as well as the ability to manufacture vesicles with at prescribed sizes (between 50 and 450 nm) in a high-throughput setting. Our results demonstrate the ability of merging liposome manufacturing and drug encapsulation in a single process step, leading to an overall reduced process time. These studies emphasise the flexibility and ease of applying lab-on-a-chip microfluidics for the solubilisation of poorly water-soluble drugs.
Resumo:
This thesis documents the design, manufacture and testing of a passive and non-invasive micro-scale planar particle-from-fluid filter for segregating cell types from a homogeneous suspension. The microfluidics system can be used to separate spermatogenic cells from testis biopsy samples, providing a mechanism for filtrate retrieval for assisted reproduction therapy. The system can also be used for point-of-service diagnostics applications for hospitals, lab-on-a-chip pre-processing and field applications such as clinical testing in the third world. Various design concepts are developed and manufactured, and are assessed based on etched structure morphology, robustness to variations in the manufacturing process, and design impacts on fluid flow and particle separation characteristics. Segregation was measured using image processing algorithms that demonstrate efficiency is more than 55% for 1 µl volumes at populations exceeding 1 x 107. the technique supports a significant reduction in time over conventional processing, in the separation and identification of particle groups, offering a potential reduction in the associated cost of the targeted procedure. The thesis has developed a model of quasi-steady wetting flow within the micro channel and identifies the forces across the system during post-wetting equalisation. The model and its underlying assumptions are validated empirically in microfabricated test structures through a novel Micro-Particle Image Velocimetry technique. The prototype devices do not require ancillary equipment nor additional filtration media, and therefore offer fewer opportunities for sample contamination over conventional processing methods. The devices are disposable with minimal reagent volumes and process waste. Optimal processing parameters and production methods are identified with any improvements that could be made to enhance their performance in a number of identified potential applications.
Resumo:
Ultrasonics offers the possibility of developing sophisticated fluid manipulation tools in lab-on-a-chip technologies. Here we demonstrate the ability to shape ultrasonic fields by using phononic lattices, patterned on a disposable chip, to carry out the complex sequence of fluidic manipulations required to detect the rodent malaria parasite Plasmodium berghei in blood. To illustrate the different tools that are available to us, we used acoustic fields to produce the required rotational vortices that mechanically lyse both the red blood cells and the parasitic cells present in a drop of blood. This procedure was followed by the amplification of parasitic genomic sequences using different acoustic fields and frequencies to heat the sample and perform a real-time PCR amplification. The system does not require the use of lytic reagents nor enrichment steps, making it suitable for further integration into lab-on-a-chip point-of-care devices. This acoustic sample preparation and PCR enables us to detect ca. 30 parasites in a microliter-sized blood sample, which is the same order of magnitude in sensitivity as lab-based PCR tests. Unlike other lab-on-a-chip methods, where the sample moves through channels, here we use our ability to shape the acoustic fields in a frequency-dependent manner to provide different analytical functions. The methods also provide a clear route toward the integration of PCR to detect pathogens in a single handheld system.
Resumo:
In this paper, we study generation of Bessel beams from semiconductor lasers with high beam propagation parameter M2 and their utilization for optical trapping and manipulation of microscopic particles including living cells. The demonstrated optical tweezing with diodegenerated Bessel beams paves the way to replace their vibronic-generated counterparts for a range of applications towards novel lab-on-a-chip configurations.
Resumo:
Recent developments in the new economic geography and the literature on regional innovation systems have emphasised the potentially important role of networking and the characteristics of firms' local operating environment in shaping their innovative activity. Modeling UK, German and Irish plants' investments in R&D, technology transfer and networking, and their effect on the extent and success of plants' innovation activities, casts some doubt on the importance of both of these relationships. In particular, our analysis provides no support for the contention that firms or plants in the UK, Ireland or Germany with more strongly developed external links (collaborative networks or technology transfer) develop greater innovation intensity. However, although inter-firm links also have no effect on the commercial success of plants' innovation activity, intra-group links are important in terms of achieving commercial success. We also find evidence that R&D, technology transfer and networking inputs are substitutes rather than complements in the innovation process, and that there are systematic sectoral and regional influences in the efficiency with which such inputs are translated into innovation outputs. © 2001 Elsevier Science B.V.
Resumo:
Vaccination remains a key tool in the protection and eradication of diseases. However, the development of new safe and effective vaccines is not easy. Various live organism based vaccines currently licensed, exhibit high efficacy; however, this benefit is associated with risk, due to the adverse reactions found with these vaccines. Therefore, in the development of vaccines, the associated risk-benefit issues need to be addressed. Sub-unit proteins offer a much safer alternative; however, their efficacy is low. The use of adjuvanted systems have proven to enhance the immunogenicity of these sub-unit vaccines through protection (i.e. preventing degradation of the antigen in vivo) and enhanced targeting of these antigens to professional antigen-presenting cells. Understanding of the immunological implications of the related disease will enable validation for the design and development of potential adjuvant systems. Novel adjuvant research involves the combination of both pharmaceutical analysis accompanied by detailed immunological investigations, whereby, pharmaceutically designed adjuvants are driven by an increased understanding of mechanisms of adjuvant activity, largely facilitated by description of highly specific innate immune recognition of components usually associated with the presence of invading bacteria or virus. The majority of pharmaceutical based adjuvants currently being investigated are particulate based delivery systems, such as liposome formulations. As an adjuvant, liposomes have been shown to enhance immunity against the associated disease particularly when a cationic lipid is used within the formulation. In addition, the inclusion of components such as immunomodulators, further enhance immunity. Within this review, the use and application of effective adjuvants is investigated, with particular emphasis on liposomal-based systems. The mechanisms of adjuvant activity, analysis of complex immunological characteristics and formulation and delivery of these vaccines are considered.
Resumo:
Particulate delivery systems such as liposomes and polymeric nano- and microparticles are attracting great interest for developing new vaccines. Materials and formulation properties essential for this purpose have been extensively studied, but relatively little is known about the influence of the administration route of such delivery systems on the type and strength of immune response elicited. Thus, the present study aimed at elucidating the influence on the immune response when of immunising mice by different routes, such as the subcutaneous, intradermal, intramuscular, and intralymphatic routes with ovalbumin-loaded liposomes, N-trimethyl chitosan (TMC) nanoparticles, and poly(lactide-co-glycolide) (PLGA) microparticles, all with and without specifically selected immune-response modifiers. The results showed that the route of administration caused only minor differences in inducing an antibody response of the IgG1 subclass, and any such differences were abolished upon booster immunisation with the various adjuvanted and non-adjuvanted delivery systems. In contrast, the administration route strongly affected both the kinetics and magnitude of the IgG2a response. A single intralymphatic administration of all evaluated delivery systems induced a robust IgG2a response, whereas subcutaneous administration failed to elicit a substantial IgG2a response even after boosting, except with the adjuvanted nanoparticles. The intradermal and intramuscular routes generated intermediate IgG2a titers. The benefit of the intralymphatic administration route for eliciting a Th1-type response was confirmed in terms of IFN-gamma production of isolated and re-stimulated splenocytes from animals previously immunised with adjuvanted and non-adjuvanted liposomes as well as with adjuvanted microparticles. Altogether the results show that the IgG2a associated with Th1-type immune responses are sensitive to the route of administration, whereas IgG1 response associated with Th2-type immune responses were relatively insensitive to the administration route of the particulate delivery systems. The route of administration should therefore be considered when planning and interpreting pre-clinical research or development on vaccine delivery systems.
Resumo:
The paper discusses both the complementary factors and contradictions of adoption ERP based systems with enterprise 2.0. ERP is well known as its' efficient business process management. Also the high failure rate the system implementation is famous as well. According to [1], ERP systems could achieve efficient business performance by enabling a standardized business process design, but at a cost of flexibility in operations. However, enterprise 2.0 supports flexible business process management, informal and less structured interactions [3],[4],[21]. Traditional researcher claimed efficiency and flexibility may seem incompatible in that they are different business objectives and may exist in different organizational environments. However, the paper will break traditional norms that combine ERP and enterprise 2.0 in a single enterprise to improve both efficient and flexible operations simultaneously. Based on the multiple cases studies, four cases presented different attitudes on usage ERP systems and enterprise social systems. Based on socio-technical theory, the paper presents in-depth analysis benefits of combination ERP with enterprise 2.0 for these firms.
Resumo:
Over the past decade or so a number of changes have been observed in traditional Japanese employment relations (ERs) systems such as an increase in non-regular workers, a move towards performance-based systems and a continuous decline in union membership. There is a large body of Anglo-Saxon and Japanese literature providing evidence that national factors such as national institutions, national culture, and the business and economic environment have significantly influenced what were hitherto three ‘sacred’ aspects of Japanese ERs systems (ERSs). However, no research has been undertaken until now at the firm level regarding the extent to which changes in national factors influence ERSs across firms. This article develops a model to examine the impact of national factors on ER systems; and analyses the impact of national factors at the firm level ER systems. Based on information collected from two different groups of companies, namely Mitsubishi Chemical Group (MCG) and Federation of Shinkin Bank (FSB) the research finds that except for a few similarities, the impact of national factors is different on Japanese ER systems at the firm level. This indicates that the impact of national factors varies in the implementation of employment relations factors. In the case of MCG, national culture has less to do with seniority-based system. Study also reveals that the national culture factors have also less influence on an enterprise-based system in the case of FSB. This analysis is useful for domestic and international organizations as it helps to better understand the role of national factors in determining Japanese ERSs.
Resumo:
We report on recent progress in the generation of non-diffracting (Bessel) beams from semiconductor light sources including both edge-emitting and surface-emitting semiconductor lasers as well as light-emitting diodes (LEDs). Bessel beams at the power level of Watts with central lobe diameters of a few to tens of micrometers were achieved from compact and highly efficient lasers. The practicality of reducing the central lobe size of the Bessel beam generated with high-power broad-stripe semiconductor lasers and LEDs to a level unachievable by means of traditional focusing has been demonstrated. We also discuss an approach to exceed the limit of power density for the focusing of radiation with high beam propagation parameter M2. Finally, we consider the potential of the semiconductor lasers for applications in optical trapping/tweezing and the perspectives to replace their gas and solid-state laser counterparts for a range of implementations in optical manipulation towards lab-on-chip configurations. © 2014 Elsevier Ltd.
Resumo:
Many applications of high-power laser diodes demand tight focusing. This is often not possible due to the multimode nature of semiconductor laser radiation possessing beam propagation parameter M2 values in double-digits. We propose a method of 'interference' superfocusing of high-M2 diode laser beams with a technique developed for the generation of Bessel beams based on the employment of an axicon fabricated on the tip of a 100 μm diameter optical fiber with highprecision direct laser writing. Using axicons with apex angle 140º and rounded tip area as small as 10 μm diameter, we demonstrate 2-4 μm diameter focused laser 'needle' beams with approximately 20 μm propagation length generated from multimode diode laser with beam propagation parameter M2=18 and emission wavelength of 960 nm. This is a few-fold reduction compared to the minimal focal spot size of 11 μm that could be achieved if focused by an 'ideal' lens of unity numerical aperture. The same technique using a 160º axicon allowed us to demonstrate few-μm-wide laser 'needle' beams with nearly 100 μm propagation length with which to demonstrate optical trapping of 5-6 μm rat blood red cells in a water-heparin solution. Our results indicate the good potential of superfocused diode laser beams for applications relating to optical trapping and manipulation of microscopic objects including living biological objects with aspirations towards subsequent novel lab-on-chip configurations.