6 resultados para knife coulter

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The procedure for successful scale-up of batchwise emulsion polymerisation has been studied. The relevant literature on liquid-liquid dispersion on scale-up and on emulsion polymerisation has been crit1cally reviewed. Batchwise emulsion polymerisation of styrene in a specially built 3 litre, unbaffled, reactor confirmed that impeller speed had a direct effect on the latex particle size and on the reaction rate. This was noted to be more significant at low soap concentrations and the phenomenon was related to the depletion of micelle forming soap by soap adsorption onto the monomer emulsion surface. The scale-up procedure necessary to maintain constant monomer emulsion surface area in an unbaffled batch reactor was therefore investigated. Three geometrically similar 'vessels of 152, 229 and 305mm internal diameter, and a range of impeller speeds (190 to 960 r.p.m.) were employed. The droplet sizes were measured either through photomicroscopy or via a Coulter Counter. The power input to the impeller was also measured. A scale-up procedure was proposed based on the governing relationship between droplet diameter, impeller speed and impeller diameter. The relationships between impeller speed soap concentration, latex particle size and reaction rate were investigated in a series of polymerisations employing an amended commercial recipe for polystyrene. The particle size was determined via a light transmission technique. Two computer models, based on the Smith and Ewart approach but taking into account the adsorption/desorption of soap at the monomer surface, were successful 1n predicting the particle size and the progress of the reaction up to the end of stage II, i.e. to the end of the period of constant reaction rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SUMMARY A study has been made of the coalescence of secondary dispersions in a fibrous bed. The literature pertaining to the formation, hydrodynamic behaviour and methods of separation of droplets less than one hundred micrometres in diameter has been reviewed with particular reference to fibrous bed coalescers. The main operating parameters were identified as inlet drop size distribution, phase ratio, superficial velocity and the thickness and voidage of the bed . A recirculatory rig with interchangeable fibrous bed pads was designed and operated with toluene-water dispersions generated by a combination of centrifugal pumps . Inlet drop sizes were analysed using a Coulter Counter and outlet drops were sized photographically. A novel technique, involving conductivity measur ements at different planes in the bed, was developed to measure hold up distribution. Single phase flow and two phase flow pressure drops were correlated by a Blake-Kozeny type equation. Exit drop size was independent of inlet drop size distribution and phase ratio but a function of superficialvelocity and packing thickness. Average bed hold up was independent of inlet drop size distribution and phase ratio, but decreased with increase in superficial velocity. Hold up was not evenly distributed in the bed, the highest value occurred at the inlet followed by a sharp -2 drop at approximately 1.2 x 10 m. Hold up remained constant throughout the rest of the bed until the exit plane, where it increased. From the results, a mechanism is postulated involving: (a) Capture of the inlet drops followed by interdrop coalescence until an equilibrium value is reached. (b) Equilibrium size droplets flowing as rivulets through the intermediate portion of the bed, and (c) Each rivulet forms droplets at the exit face, which detach by a 'drip point' mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study has been made of the coalescence of secondary dispersions in beds of woven meshes. The variables investigated were superficial velocity, bed depth, mesh geometry and fibre material; the effects of presoaking the bed in the dispersed phase before operation were also considered. Equipment was design~d to generate a 0.1% phase ratio toluene in water dispersion whose mean drop size was determined using a Coulter Counter. The coalesced drops were sized by photography and a novel holographic technique was developed to evaluate the mean diameter of the effluent secondary drops. Previous models describing single phase flow in porous media are reviewed and it was found that the experimental data obtained in this study is best represented by Keller's equation which is based on a physical model similar to the internal structure of the meshes. Statistical analysis of two phase data produced a correlation, for each mesh tested, relating the pressure drop to superficial velocity and bed depth. The flow parameter evaluated from the single phase model is incorporated into a theoretical comparison of drop capture mechanisms which indicated that direct and indirect interception are predominant. The resulting equation for drop capture efficiericy is used to predict the initial, local drop capture rate in a coalescer. A mathematical description of the saturation profiles was formulated and verified by average saturation data. Based 6n the Blake-Kozeny equation, an expression is derived analytically to predict the two phase pressure drop using the parameters which characterise the saturation profiles. By specifying the local saturation at the inlet face for a given velocity, good agreement between experimental pressure drop data and the model predictions was obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study has been made of the coalescence of secondary dispersions in beds of monosized glass ballotini. The variables investigated were superficial velocity, bed depth, ballotini size and dispersed phase concentration. Equipment was designed to generate a toluene ln water dispersion with phase ratios from 0.1 - 1.0 v/v % and whose mean drop size was determined using a Coulter Counter. The coalesced drops were sized by photography and the mean diameter of the effluent drops was determined using a Malvern Particle Size Analyser. Previous models describing single phase flow in porous media are reviewed and it was found that the experimental data obtained in this study is best represented by the Carman-Kozeny equations. Relative permeability correlations were used to predict the saturation profiles across the bed from measured two phase pressure drop data. Theoretical comparison of drop capture mechanisms indicated that direct and indirect interception are predominant. The total capture efficiency for the bed can also be evaluated using Spielman and Fitzpatrick's correlation.The resulting equation is used to predict the initial, local drop capture rate in a coalescer. A mathematical description of the saturation profiles is formulated and verified by the saturation profiles obtained by relative permeability. Based on the Carman-Kozeny equation, an expression is derived analytically to .predict the two phase pressure drop using the parameters which characterise the saturation profiles. By specifying the local saturation at the inlet face for a given velocity and phase ratio, good agreement between experimental pressure drop data and the model predictions was obtained. An attempt to predict the exit drop size has been made using an analogy for flow through non cylindrical channels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose. To evaluate the influence of soft contact lens midperipheral shape profile and edge design on the apparent epithelial thickness and indentation of the ocular surface with lens movement. Methods. Four soft contact lens designs comprising of two different plano midperipheral shape profiles and two edge designs (chiseled and knife edge) of silicone-hydrogel material were examined in 26 subjects aged 24.7 ± 4.6 years, each worn bilaterally in randomized order. Lens movement was imaged enface on insertion, at 2 and 4 hours with a high-speed, high-resolution camera simultaneous to the cross-section of the edge of the contact lens interaction with the ocular surface captured using optical coherence tomography (OCT) nasally, temporally, and inferiorly. Optical imaging distortions were individually corrected for by imaging the apparent distortion of a glass slide surface by the removed lens. Results. Apparent epithelial thickness varied with edge position (P < 0.001). When distortion was corrected for, epithelial indentation decreased with time after insertion (P = 0.010), changed after a blink (P < 0.001), and varied with position on the lens edge (P < 0.001), with the latter being affected by midperipheral lens shape profile and edge design. Horizontal and vertical lens movement did not change with time postinsertion. Vertical motion was affected by midperipheral lens shape profile (P < 0.001) and edge design (P < 0.001). Lens movement was associated with physiologic epithelium thickness for lens midperipheral shape profile and edge designs. Conclusions. Dynamic OCT coupled with high-resolution video demonstrated that soft contact lens movement and image-corrected ocular surface indentation were influenced by both lens edge design and midperipheral lens shape profiles. © 2013 The Association for Research in Vision and Ophthalmology, Inc.