8 resultados para kinetic energy
em Aston University Research Archive
Resumo:
Surface deposition of dense aerosol particles is of major concern in the nuclear industry for safety assessment. This study presents theoretical investigations and computer simulations of single gas-born U3O8 particles impacting with the in-reactor surface and the fragmentation of small agglomerates. A theoretical model for elasto-plastic spheres has been developed and used to analyse the force-displacement and force-time relationships. The impulse equations, based on Newton's second law, are applied to govern the tangential bouncing behaviour. The theoretical model is then incorporated into the Distinct Element Method code TRUBAL in order to perform computer simulated tests of particle collisions. A comparison of simulated results with both theoretical predictions and experimental measurements is provided. For oblique impacts, the results in terms of the force-displacement relationship, coefficients of restitution, trajectory of the impacting particle, and distribution of kinetic energy and work done during the process of impact are presented. The effects of Poisson's ratio, friction, plastic deformation and initial particle rotation on the bouncing behaviour are also discussed. In the presence of adhesion an elasto-plastic collision model, which is an extension to the JKR theory, is developed. Based on an energy balance equation the critical sticking velocity is obtained. For oblique collisions computer simulated results are used to establish a set of criteria determining whether or not the particle bounces off the target plate. For impact velocities above the critical sticking value, computer simulated results for the coefficients of restitution and rebound angles of the particle are presented. Computer simulations of fracture/fragmentation resulting from agglomerate-wall impact have also been performed, where two randomly generated agglomerates (one monodisperse, the other polydisperse), each consisting of 50 primary particles are used. The effects of impact angle, local structural arrangements close to the impact point, and plastic deformation at the contacts on agglomerate damage are examined. The simulated results show a significant difference in agglomerate strength between the two assemblies. The computer data also shows that agglomerate damage resulting from an oblique impact is determined by the normal velocity component rather than the impact speed.
Resumo:
Mixing phenomena observed when the flow rate in a single loop of the primary circuit is changed can influence the operation of pressurized water reactor (PWR) by inducing local gradients of boron concentration or coolant temperature. Analysis of one-dimensional Laser Doppler Anemometry (LDA) measurements during the start-up and shutdown of pump on a single loop of the ROCOM test facility has been performed. The effect of a step change and a ramped change in the flow rate on the axial and azimuthal velocities was examined. Numerical simulations were also performed for the step change in the flow rate that gave quantitative agreement with the axial velocities. Phenomenological agreement was made on the turbulent kinetic energy; however, observed values were a factor of 2.5 less than the turbulent kinetic energy derived from the measurements. © 2007.
Resumo:
The fracture process involves converting potential energy from a strained body into surface energy, thermal energy, and the energy needed to create lattice defects. In dynamic fracture, energy is also initially converted into kinetic energy. This paper uses molecular dynamics (MD) to simulate brittle frcture in silicon and determine how energy is converted from potential energy (strain energy) into other forms.
Resumo:
The purpose of this work is to gain knowledge on kinetics of biomass decomposition under oxidative atmospheres, mainly examining effect of heating rate on different biomass species. Two sets of experiments are carried out: the first set of experiments is thermal decomposition of four different wood particles, namely aspens, birch, oak and pine under an oxidative atmosphere and analysis with TGA; and the second set is to use large size samples of wood under different heat fluxes in a purpose-built furnace, where the temperature distribution, mass loss and ignition characteristics are recorded and analyzed by a data post-processing system. The experimental data is then used to develop a two-step reactions kinetic scheme with low and high temperature regions while the activation energy for the reactions of the species under different heating rates is calculated. It is found that the activation energy of the second stage reaction for the species with similar constituent fractions tends to converge to a similar value under the high heating rate.
Resumo:
Algae are a new potential biomass for energy production but there is limited information on their pyrolysis and kinetics. The main aim of this thesis is to investigate the pyrolytic behaviour and kinetics of Chlorella vulgaris, a green microalga. Under pyrolysis conditions, these microalgae show their comparable capabilities to terrestrial biomass for energy and chemicals production. Also, the evidence from a preliminary pyrolysis by the intermediate pilot-scale reactor supports the applicability of these microalgae in the existing pyrolysis reactor. Thermal decomposition of Chlorella vulgaris occurs in a wide range of temperature (200-550°C) with multi-step reactions. To evaluate the kinetic parameters of their pyrolysis process, two approaches which are isothermal and non-isothermal experiments are applied in this work. New developed Pyrolysis-Mass Spectrometry (Py-MS) technique has the potential for isothermal measurements with a short run time and small sample size requirement. The equipment and procedure are assessed by the kinetic evaluation of thermal decomposition of polyethylene and lignocellulosic derived materials (cellulose, hemicellulose, and lignin). In the case of non-isothermal experiment, Thermogravimetry- Mass Spectrometry (TG-MS) technique is used in this work. Evolved gas analysis provides the information on the evolution of volatiles and these data lead to a multi-component model. Triplet kinetic values (apparent activation energy, pre-exponential factor, and apparent reaction order) from isothermal experiment are 57 (kJ/mol), 5.32 (logA, min-1), 1.21-1.45; 9 (kJ/mol), 1.75 (logA, min-1), 1.45 and 40 (kJ/mol), 3.88 (logA, min-1), 1.45- 1.15 for low, middle and high temperature region, respectively. The kinetic parameters from non-isothermal experiment are varied depending on the different fractions in algal biomass when the range of apparent activation energies are 73-207 (kJ/mol); pre-exponential factor are 5-16 (logA, min-1); and apparent reaction orders are 1.32–2.00. The kinetic procedures reported in this thesis are able to be applied to other kinds of biomass and algae for future works.
Resumo:
The kinetic parameters of the pyrolysis of miscanthus and its acid hydrolysis residue (AHR) were determined using thermogravimetric analysis (TGA). The AHR was produced at the University of Limerick by treating miscanthus with 5 wt.% sulphuric acid at 175 °C as representative of a lignocellulosic acid hydrolysis product. For the TGA experiments, 3 to 6 g of sample, milled and sieved to a particle size below 250 μm, were placed in the TGA ceramic crucible. The experiments were carried out under non-isothermal conditions heating the samples from 50 to 900 °C at heating rates of 2.5, 5, 10, 17 and 25 °C/min. The activation energy (EA) of the decomposition process was determined from the TGA data by differential analysis (Friedman) and three isoconversional methods of integral analysis (Kissinger–Akahira–Sunose, Ozawa–Flynn–Wall, Vyazovkin). The activation energy ranged from 129 to 156 kJ/mol for miscanthus and from 200 to 376 kJ/mol for AHR increasing with increasing conversion. The reaction model was selected using the non-linear least squares method and the pre-exponential factor was calculated from the Arrhenius approximation. The results showed that the best fitting reaction model was the third order reaction for both feedstocks. The pre-exponential factor was in the range of 5.6 × 1010 to 3.9 × 10+ 13 min− 1 for miscanthus and 2.1 × 1016 to 7.7 × 1025 min− 1 for AHR.
Resumo:
The reactivity of chemically isolated lignocellulosic blocks, namely, α-cellulose, holocellulose, and lignin, has been rationalized on the basis of the dependence of the effective activation energy (Eα) upon conversion (α) determined via the popular isoconversional kinetic analysis, Friedman’s method. First of all, a detailed procedure for the thermogravimetric data preparation, kinetic calculation, and uncertainty estimation was implemented. Resulting Eα dependencies obtained for the slow pyrolysis of the extractive-free Eucalyptus grandis isolated α-cellulose and holocellulose remained constant for 0.05 < α < 0.80 and equal to 173 ± 10, 208 ± 11, and 197 ± 118 kJ/mol, thus confirming the single-step nature of pyrolysis. On the other hand, large and significant variations in Eα with α from 174 ± 10 to 322 ± 11 kJ/mol in the region of 0.05 and 0.79 were obtained for the Klason lignin and reported for the first time. The non-monotonic nature of weight loss at low and high conversions had a direct consequence on the confidence levels of Eα. The new experimental and calculation guidelines applied led to more accurate estimates of Eα values than those reported earlier. The increasing Eα dependency trend confirms that lignin is converted into a thermally more stable carbonaceous material.