4 resultados para kidney vascular resistance
em Aston University Research Archive
Resumo:
The present study investigated the effect of the two most abundant FFA in plasma – palmitate and oleate – on insulin sensitivity and vascular function (monocyte phenotype and adhesion to endothelium) using in vitro cell culture models and Wistar rats. Palmitate at 300µM for 6h induced insulin resistance in THP-1 monocytes and L6 monocytes. The ceramide synthesis pathway partly accounted for the palmitate-induced insulin resistance in THP-1 monocytes but not for L6 myotubes. Oleate treatment did not induce insulin resistance in either cell type and co-incubation with oleate protected cells from palmitate-induced insulin resistance. Palmitate at 300µN for 24h significantly increased cell surface CD11b and CD36 expression in U937 monocytes. The increase in CD11b and CD36 expression was effectively inhibited by Fumonisin B1, an inhibitor of ceramide synthesis. Oleate treatment did not show any effect on CD11b and CD36 expression and co-incubation with oleate antagonised the effect of palmitate on CD11b and CD36 expression in U937 monocytes. The increase in CD11b expression did not affect U937 monocyte adhesion to ICAM-1. Treating Wistar rats with palmitate for 6h caused a transient delay in glucose disposal and an increase in adhesion of U937 monocytes to the aortic endothelium, particularly at bifurcations. In conclusion, the present study demonstrates that the saturated free fatty acid palmitate induces insulin resistance and a pro-atherogenic phenotype for monocytes, whereas the unsaturated free fatty acid oleate does not. In vivo studies also confirmed that palmitate induces insulin resistance and an increase in monocyte adhesion to aorta.
Resumo:
Environmental perturbations during early mammalian development can affect aspects of offspring growth and cardiovascular health. We have demonstrated previously that maternal gestational dietary protein restriction in mice significantly elevated adult offspring systolic blood pressure. Therefore, the present study investigates the key mechanisms of blood pressure regulation in these mice. Following mating, female MF-1 mice were assigned to either a normal-protein diet (NPD; 18% casein) or an isocaloric low-protein diet throughout gestation (LPD; 9% casein), or fed the LPD exclusively during the pre-implantation period (3.5d) before returning to the NPD for the remainder of gestation (Emb-LPD). All offspring received standard chow. At 22 weeks, isolated mesenteric arteries from LPD and Emb-LPD males displayed significantly attenuated vasodilatation to isoprenaline (P=0.04 and P=0.025, respectively), when compared with NPD arteries. At 28 weeks, stereological analysis of glomerular number in female left kidneys revealed no significant difference between the groups. Real-time RT-PCR analysis of type 1a angiotensin II receptor, Na /K ATPase transporter subunits and glucocorticoid receptor expression in male and female left kidneys revealed no significant differences between the groups. LPD females displayed elevated serum angiotensin-converting enzyme (ACE) activity (P=0.044), whilst Emb-LPD males had elevated lung ACE activity (P=0.001), when compared with NPD offspring. These data demonstrate that elevated offspring systolic blood pressure following maternal gestational protein undernutrition is associated with impaired arterial vasodilatation in male offspring, elevated serum and lung ACE activity in female and male offspring, respectively, but kidney glomerular number in females and kidney gene expression in male and female offspring appear unaffected. © 2010 The Authors.
Resumo:
Microvascular endothelial monolayers from mouse myocardium (MyEnd) cultured for up to 5 days postconfluency became increasingly resistant to various barrier-compromising stimuli such as low extracellular Ca2+ and treatment with the Ca2+ ionophore A23187 and with the actin depolymerising compound cytochalasin D. In contrast, microvascular endothelial monolayers from mouse lung microvessels (PulmEnd) remained sensitive to these conditions during the entire culture period which corresponds to the well-known in vivo sensitivity of the lung microvasculature to Ca2+depletion and cytochalasin D treatment. One molecular difference between pulmonary and myocardial endothelial cells was found to be transglutaminase 1 (TGase1) which is strongly expressed in myocardial endothelial cells but is absent from pulmonary endothelial cells. Resistance of MyEnd cells to barrier-breaking conditions correlated strongly with translocation of TGase1 to intercellular junctions. Simultaneous inhibition of intracellular and extracellular TGase activity by monodansylcadaverine (MDC) strongly weakened barrier properties of MyEnd monolayers, whereas inhibition of extracellular TGases by the membrane-impermeable active site-directed TGase inhibitor R281 did not reduce barrier properties. Weakening of barrier properties could be also induced in MyEnd cells by downregulation of TGase1 expression using RNAi-based gene silencing. These findings suggest that crosslinking activity of intracellular TGase1 at intercellular junctions may play a role in controlling barrier properties of endothelial monolayers.
Resumo:
Insulin resistance is a major endocrinopathy underlying the development of hyperglycaemia and cardiovascular disease in type 2 diabetes. Metformin (a biguanide) and rosiglitazone (a thiazolidinedione) counter insulin resistance, acting by different cellular mechanisms. The two agents can be used in combination to achieve additive glucose-lowering efficacy in the treatment of type 2 diabetes, without stimulating insulin secretion and without causing hypoglycaemia. Both agents also reduce a range of atherothrombotic factors and markers, indicating a lower cardiovascular risk. Early intervention with metformin is already known to reduce myocardial infarction and increase survival in overweight type 2 patients. Recently, a single-tablet combination of metformin and rosiglitazone, Avandamet, has become available. Avandamet is suitable for type 2-diabetic patients who are inadequately controlled by monotherapy with metformin or rosiglitazone. Patients already receiving separate tablets of metformin and rosiglitazone may switch to the single-tablet combination for convenience. Also, early introduction of the combination before maximal titration of one agent can reduce side effects. Use of Avandamet requires attention to the precautions for both metformin and rosiglitazone, especially renal, cardiac and hepatic competence. In summary, Avandamet is a single-tablet metformin-rosiglitazone combination that doubly targets insulin resistance as therapy for hyperglycaemia and vascular risk in type 2 diabetes. © 2004 Blackwell Publishing Ltd.