14 resultados para keratometry
em Aston University Research Archive
Resumo:
Purpose. A clinical evaluation of the Shin-Nippon NVision-K 5001 (also branded as the Grand Seiko WR-5100K) autorefractor (Japan) was performed to examine validity and repeatability compared with subjective refraction and Javal-Schiotz keratometry. Methods. Measurements of refractive error were performed on 198 eyes of 99 subjects (aged 23.2 ± 7.4 years) subjectively (noncycloplegic) by one masked optometrist and objectively with the NVision-K autorefractor by a second optometrist. Keratometry measurements using the NVision-K were compared with the Javal-Schiotz keratometer. Intrasession repeatability of the NVision-K was also assessed on all 99 subjects together with intersession repeatability on a separate occasion separated by 7 to 14 days. Results. Refractive error as measured by the NVision-K was found to be similar (p = 0.67) to subjective refraction (difference, 0.14 ± 0.35 D). It was both accurate and repeatable over a wide prescription range (-8.25 to +7.25 D). Keratometry as measured by the NVision-K was found to be similar (p > 0.50) to the Javal-Schiotz technique in both the horizontal and vertical meridians (horizontal: difference, 0.02 ± 0.09 mm; vertical: difference, 0.01 ± 0.14 mm). There was minimal bias, and the results were repeatable (horizontal: intersession difference, 0.00 ± 0.09 mm; vertical: intersession difference, -0.01 ± 0.12 mm). Conclusion. The open-view arrangement of the Shin-Nippon NVision-K 5001 facilitates the measurement of static refractive error and the accommodative response to real-world stimuli. Coupled with its accuracy, repeatability, and capability to measure corneal curvature, it is a valuable addition to objective instrumentation currently available to the optometrist and researcher.
Resumo:
PURPOSE: To perform advanced analysis of the corneal deformation response to air pressure in keratoconics compared with age- and sex-matched controls. METHODS: The ocular response analyzer was used to measure the air pressure-corneal deformation relationship of 37 patients with keratoconus and 37 age (mean 36 ± 10 years)- and sex-matched controls with healthy corneas. Four repeat air pressure-corneal deformation profiles were averaged, and 42 separate parameters relating to each element of the profiles were extracted. Corneal topography and pachymetry were performed with the Orbscan II. The severity of the keratoconus was graded based on a single metric derived from anterior corneal curvatures, difference in astigmatism in each meridian, anterior best-fit sphere, and posterior best-fit sphere. RESULTS: Most of the biomechanical characteristics of keratoconic eyes were significantly different from normal eyes (P <0.001), especially during the initial corneal applanation. With increasing keratoconus severity, the cornea was thinner (r = -0.407, P <0.001), the speed of corneal concave deformation past applanation was quicker (dive; r = -0.314, P = 0.01), and the tear film index was lower (r = -0.319, P = 0.01). The variance in keratoconus severity could be accounted for by the corneal curvature and central corneal thickness (r = 0.80) with biomechanical characteristics contributing an additional 4% (total r = 0.84). The area under the receiver operating characteristic curve was 0.919 ± 0.025 for keratometry alone, 0.965 ± 0.014 with the addition of pachymetry, and 0.972 ± 0.012 combined with ocular response analyzer biomechanical parameters. CONCLUSIONS: Characteristics of the air pressure-corneal deformation profile are more affected by keratoconus than the traditionally extracted corneal hysteresis and corneal resistance factors. These biomechanical metrics slightly improved the detection and severity prediction of keratoconus above traditional keratometric and pachymetric assessment of corneal shape.
Resumo:
To evaluate the influence of peripheral ocular topography, as evaluated by optical coherence tomography (OCT), compared with traditional measures of corneal profile using keratometry and videokeratoscopy, on soft contact lens fit.
Resumo:
Purpose: A clinical evaluation of the Grand Seiko Auto Ref/Keratometer WAM-5500 (Japan) was performed to evaluate validity and repeatability compared with non-cycloplegic subjective refraction and Javal–Schiotz keratometry. An investigation into the dynamic recording capabilities of the instrument was also conducted. Methods: Refractive error measurements were obtained from 150 eyes of 75 subjects (aged 25.12 ± 9.03 years), subjectively by a masked optometrist, and objectively with the WAM-5500 at a second session. Keratometry measurements from the WAM-5500 were compared to Javal–Schiotz readings. Intratest variability was examined on all subjects, whilst intertest variability was assessed on a subgroup of 44 eyes 7–14 days after the initial objective measures. The accuracy of the dynamic recording mode of the instrument and its tolerance to longitudinal movement was evaluated using a model eye. An additional evaluation of the dynamic mode was performed using a human eye in relaxed and accommodated states. Results: Refractive error determined by the WAM-5500 was found to be very similar (p = 0.77) to subjective refraction (difference, -0.01 ± 0.38 D). The instrument was accurate and reliable over a wide range of refractive errors (-6.38 to +4.88 D). WAM-5500 keratometry values were steeper by approximately 0.05 mm in both the vertical and horizontal meridians. High intertest repeatability was demonstrated for all parameters measured: for sphere, cylinder power and MSE, over 90% of retest values fell within ±0.50 D of initial testing. In dynamic (high-speed) mode, the root-mean-square of the fluctuations was 0.005 ± 0.0005 D and a high level of recording accuracy was maintained when the measurement ring was significantly blurred by longitudinal movement of the instrument head. Conclusion: The WAM-5500 Auto Ref/Keratometer represents a reliable and valid objective refraction tool for general optometric practice, with important additional features allowing pupil size determination and easy conversion into high-speed mode, increasing its usefulness post-surgically following accommodating intra-ocular lens implantation, and as a research tool in the study of accommodation.
Resumo:
PURPOSE. It is well documented that myopia is associated with an increase in axial length or, more specifically, in vitreous chamber depth. Whether the transverse dimensions of the eye also increase in myopia is relevant to further understanding of its development. METHODS. The posterior retinal surface was localized in two-dimensional space in both eyes of young adult white and Taiwanese-Chinese iso- and anisomyopes (N = 56), from measured keratometry, A-scan ultrasonography, and central and peripheral refraction (±35°) data, with the aid of a computer modeling program designed for this purpose. Anisomyopes had 2 D or more interocular difference in their refractive errors, with mean values in their more myopic eyes of -5.57 D and in their less myopic eyes of -3.25 D, similar to the means of the two isomyopic groups. The derived retinal contours for the more and less myopic eyes were compared by way of investigating ocular shape changes that accompany myopia, in the posterior region of the vitreous chamber. The presence and size of optic disc crescents were also investigated as an index of retinal stretching in myopia. RESULTS. Relative to the less myopic eyes of anisometropic subjects, the more myopic eyes were more elongated and also distorted into a more prolate shape in both the white and Chinese groups. However, the Chinese eyes showed a greater and more uniform relative expansion of the posterior retinal surface in their more myopic eyes, and this was associated with larger optic disc crescents. The changes in the eyes of whites displayed a nasal-temporal axial asymmetry, reflecting greater enlargement of the nasal retinal sector. CONCLUSIONS. Myopia is associated with increased axial length and a prolate shape. This prolate shape is consistent with the proposed idea that axial and transverse dimensions of the eye are regulated differently. The observations that ocular shape changes are larger but more symmetrical in Chinese eyes than in eyes of whites warrant further investigation.
Resumo:
Purpose: Optometrists are becoming more integrally involved in the diagnosis of and care for glaucoma patients in the UK. The correlation of apparent change in non contact tonometry (NCT) IOP measurement and change in other ocular parameters such as refractive error, corneal curvature, corneal thickness and treatment zone size (data available to optometrists after LASIK) would facilitate care of these patients. Setting: A UK Laser Eye Clinic. Methods: This is a retrospective study study of 200 sequential eyes with myopia with or without astigmatism which underwent LASIK using a Hansatome and an Alcon LADARvision 4000 excimer laser. Refraction keratometry, pachymetry and NCT IOP mesurements were taken before treatmebnt and agian 3 months after treatment. The relationship between these variables anfd teh treatment zones were studied using stepwise multiple regression analysis. Results: There was a mean difference of 5.54mmHg comnparing pre and postoperative NCT IOP. IOP change correlates with refractive error change (P < 0.001), preoperative corneal thickness (P < 0.001) and treatment zone size (P = 0.047). Preoperative corneal thickness correlates with preoperative IOP (P < 0.001) and postoperative IOP (P < 0.001). Using these correlations, the measured difference in NCT IIOP can be predicted preoperatively or postoperatively using derived equations.Conclusion: There is a significant reduction in measured NCT IOP after LASIK. The amount of reduction can be calculated using data acquired by optometrists. This is helpful for opthalmologists and optometrists who co-manage glaucoma patients who have had LASIK or with glaucoma pateints who are consideraing having LASIK.
Resumo:
Myopia is a refractive condition and develops because either the optical power of the eye is abnormally great or the eye is abnormally long, the optical consequences being that the focal length of the eye is too short for the physical length of the eye. The increase in axial length has been shown to match closely the dioptric error of the eye, in that a lmm increase in axial length usually generates 2 to 3D of myopia. The most common form of myopia is early-onset myopia (EO M) which occurs between 6 to 14 years of age. The second most common form of myopia is late-onset myopia (LOM) which emerges in late teens or early twenties, at a time when the eye should have ceased growing. The prevalence of LOM is increasing and research has indicated a link with excessive and sustained nearwork. The aim of this thesis was to examine the ocular biometric correlates associated with LOM and EOM development and progression. Biometric data was recorded on SO subjects, aged 16 to 26 years. The group was divided into 26 emmetropic subjects and 24 myopic subjects. Keratometry, corneal topography, ultrasonography, lens shape, central and peripheral refractive error, ocular blood flow and assessment of accommodation were measured on three occasions during an ISmonth to 2-year longitudinal study. Retinal contours were derived using a specially derived computer program. The thesis shows that myopia progression is related to an increase in vitreous chamber depth, a finding which supports previous work. The myopes exhibited hyperopic relative peripheral refractive error (PRE) and the emmetropes exhibited myopic relative PRE. Myopes demonstrated a prolate retinal shape and the retina became more prolate with myopia progression. The results show that a longitudinal, rather than equatorial, increase in the posterior segment is the principal structural correlate of myopia. Retinal shape, relative PRE and the ratio of axial length to corneal curvature have been indicated, in this thesis, as predictive factors for myopia onset and development. Data from this thesis demonstrates that myopia progression in the LOM group is the result of an increase in anterior segment power, owing to an increase in lens thickness, in conjunction with posterior segment elongation. Myopia progression in the EOM group is the product of a long posterior segment, which over-compensates for a weak anterior segment power. The weak anterior segment power in the EOM group is related to a combination of crystalline lens thinning and surface flattening. The results presented in this thesis confirm that posterior segment elongation is the main structural correlate in both EOM and LOM progression. The techniques and computer programs employed in the thesis are reproducible and robust providing a valuable framework for further myopia research and assessment of predictive factors.
Resumo:
It has often been found that corneal astigmatism exceeds the amount exhibited by the eye as a whole. This difference is usually referred to as residual astigmatism. Scrutiny of the studies of corneal astigmatismreveal that what has actually been measured is the astigmatic contributionof the anterior corneal surface alone. This anterior surface is easily measured whereas measurement of the posterior corneal surface is much more difficult. A method was therefore developed to measure the radius and toricity of the posterior corneal surface. The method relies upon photography of the first and second Purkinje images in three fixed meridians. Keratometry, comparison of anterior and posterior corneal Purkinje images and pachometricdata were applied to three meridional analysis equations, allowing the posterior corneal surface to be described in sphero-cylindrical form. Measurements were taken from 80 healthy subjects from two distinct age groups. The first consisted of 60 young subjects, mean age 22.04 years and the second consisted of 20 old subjects, mean age 74.64 years. The young group consisted of 28 myopes, 24 emmetropes and 8 hyperopes. The old group consisted of 6 myopes and 14 hyperopes. There was an equal number of males and females in each group. These groupings allowed the study of the effects of age, ametropia and gender on the posterior corneal toricity. The effect of the posterior corneal surface on residual astigmatism was assessed and was found to cause an overall reduction. This reduction was due primarily to the posterior corneal surface being consistently steeper relative to the anterior surface in the vertical meridian compared to the horizontal meridian.
Resumo:
PURPOSE: To assess the clinical outcomes after implantation of a new hydrophobic acrylic toric intraocular lens (IOL) to correct preexisting corneal astigmatism in patients having routine cataract surgery. SETTING: Four hospital eye clinics throughout Europe. DESIGN: Cohort study. METHODS: This study included eyes with at least 0.75 diopter (D) of preexisting corneal astigmatism having routine cataract surgery. Phacoemulsification was performed followed by insertion and alignment of a Tecnis toric IOL. Patients were examined 4 to 8 weeks postoperatively; uncorrected distance visual acuity (UDVA), corrected distance visual acuity, manifest refraction, and keratometry were measured. Individual patient satisfaction with uncorrected vision and the surgeon’s assessment of ease of handling and performance of the IOL were also documented. The cylinder axis of the toric IOL was determined by dilated slitlamp examination. RESULTS: The study enrolled 67 eyes of 60 patients. Four to 8 weeks postoperatively, the mean UDVA was 0.15 logMAR G 0.17 (SD) and the UDVA was 20/40 or better in 88% of eyes. The mean refractive cylinder decreased significantly postoperatively, from -1.91 +/- 1.07 D to -0.67 +/- 0.54 D. No significant change in keratometric cylinder was observed. The mean absolute IOL misalignment from the intended axis was 3.4 degrees (range 0 to 12 degrees). The good UDVA resulted in high levels of patient satisfaction. CONCLUSION: Implantation of the new toric IOL was an effective, safe, and predictable method to manage corneal astigmatism in patients having routine cataract surgery.
Resumo:
AIM: To determine the validity and reliability of the measurement of corneal curvature and non-invasive tear break-up time (NITBUT) measures using the Oculus Keratograph. METHOD: One hundred eyes of 100 patients had their corneal curvature assessed with the Keratograph and the Nidek ARKT TonorefII. NITBUT was then measured objectively with the Keratograph with Tear Film Scan software and subjectively with the Keeler Tearscope. The Keratograph measurements of corneal curvature and NITBUT were repeated to test reliability. The ocular sensitivity disease index questionnaire was completed to quantify ocular comfort. RESULTS: The Keratograph consistently measured significantly flatter corneal curvatures than the ARKT (MSE difference: +1.83±0.44D), but was repeatable (p>0.05). Keratograph NITBUT measurements were significantly lower than observation using the Tearscope (by 12.35±7.45s; pp < 0.001) and decreased on subsequent measurement (by -1.64 ± 6.03s; p < 0.01). The Keratograph measures the first time the tears break up anywhere on the cornea with 63% of subjects having NI-TBUT's <5s and a further 22% having readings between 5 and 10s. The Tearscope results were found to correlate better with the patients symptoms (r = -0.32) compared to the Keratograph (r = -0.19). Conclusions: The Keratograph requires a calibration off-set to be comparable to other keratometry devices. Its current software detects very early tear film changes, recording significantly lower NITBUT values than conventional subjective assessment. Adjustments to instrumentation software have the potential to enhance the value of Keratograph objective measures in clinical practice.
Resumo:
PURPOSE: To evaluate factors affecting corneoscleral profile (CSP) using Anterior Segment Optical Coherence Tomography (AS-OCT) in combination with conventional videokeratoscopy. METHODS: OCT data were collected from 204 subjects of mean age 34.9 years (SD: ±15.2 yrs, range 18 to 65) using the Zeiss Visante AS-OCT and Medmont M300 corneal topographer. Measurements of corneal diameter (CD), corneal sagittal height (CS), iris diameter (ID), corneoscleral junction angle (CSJ) and scleral radius (SR) were extracted from multiple OCT images. Horizontal visible iris diameter (HVID) and vertical palpebral aperture (PA) were measured using a slit lamp graticule. Subject body height was also measured. Associations were then sought between CSP variables and age, height, ethnicity, sex and refractive error data collected. Results: Significant correlations were found between age and ocular topography variables of HVID, PA, CSJ, SR and ID (P<0.0001), while height correlated with HVID, CD and ID, and power vector terms only with vertical plane keratometry, CD and CS. Significant differences were noted between ethnicities with respect to CD (P=0.0046), horizontal and vertical CS (P=0.0068 and P=0.0095), and also horizontal ID (P=0.0010), while the same variables, with the exception of vertical CS, also varied with sex; horizontal CD (P=0.0018), horizontal CS (P=0.0018) and ID (P=0.0012). Age accounted for up to 36% of the variance in CSP variables. Conclusion: Age is the main factor influencing corneoscleral topography; consequently, this should be taken into consideration in contact lens design, in the optimization of surgical procedures involving the cornea and sclera and in IOL selection.
Resumo:
Aim To assess the accuracy and reproducibility of biometry undertaken with the Aladdin (Topcon, Tokyo, Japan) in comparison with the current gold standard device, the IOLMaster 500 (Zeiss, Jena, Germany). Setting University Eye Clinic, Birmingham, UK and Refractive Surgery Centre, Kiel, Germany. Methods The right eye of 75 patients with cataracts and 22 healthy participants were assessed using the two devices. Measurements of axial length (AL), anterior chamber depth (ACD) and keratometry (K) were undertaken with the Aladdin and IOLMaster 500 in random order by an experienced practitioner. A second practitioner then obtained measurements for each participant using the Aladdin biometer in order to assess interobserver variability. Results No statistically significant differences ( p≥0.05) between the two biometers were found for average difference (AL)±95% CI=0.01±0.06 mm), ACD (0.00 ±0.11 mm) or mean K values (0.08±0.51 D). Furthermore, interobserver variability was very good for each parameter (weighted κ≥0.85). One patient's IOL powers could not be calculated with either biometer measurements, whereas a further three could not be analysed by the IOLMaster 500. The IOL power calculated from the valid measurements was not statistically significantly different between the biometers (p=0.842), with 91% of predictions within±0.25 D. Conclusions The Aladdin is a quick, easy-to-use biometer that produces valid and reproducible results that are comparable with those obtained with the IOLMaster 500.
Resumo:
The principal theme of this thesis is the identification of additional factors affecting, and consequently to better allow, the prediction of soft contact lens fit. Various models have been put forward in an attempt to predict the parameters that influence soft contact lens fit dynamics; however, the factors that influence variation in soft lens fit are still not fully understood. The investigations in this body of work involved the use of a variety of different imaging techniques to both quantify the anterior ocular topography and assess lens fit. The use of Anterior-Segment Optical Coherence Tomography (AS-OCT) allowed for a more complete characterisation of the cornea and corneoscleral profile (CSP) than either conventional keratometry or videokeratoscopy alone, and for the collection of normative data relating to the CSP for a substantial sample size. The scleral face was identified as being rotationally asymmetric, the mean corneoscleral junction (CSJ) angle being sharpest nasally and becoming progressively flatter at the temporal, inferior and superior limbal junctions. Additionally, 77% of all CSJ angles were within ±50 of 1800, demonstrating an almost tangential extension of the cornea to form the paralimbal sclera. Use of AS-OCT allowed for a more robust determination of corneal diameter than that of white-to-white (WTW) measurement, which is highly variable and dependent on changes in peripheral corneal transparency. Significant differences in ocular topography were found between different ethnicities and sexes, most notably for corneal diameter and corneal sagittal height variables. Lens tightness was found to be significantly correlated with the difference between horizontal CSJ angles (r =+0.40, P =0.0086). Modelling of the CSP data gained allowed for prediction of up to 24% of the variance in contact lens fit; however, it was likely that stronger associations and an increase in the modelled prediction of variance in fit may have occurred had an objective method of lens fit assessment have been made. A subsequent investigation to determine the validity and repeatability of objective contact lens fit assessment using digital video capture showed no significant benefit over subjective evaluation. The technique, however, was employed in the ensuing investigation to show significant changes in lens fit between 8 hours (the longest duration of wear previously examined) and 16 hours, demonstrating that wearing time is an additional factor driving lens fit dynamics. The modelling of data from enhanced videokeratoscopy composite maps alone allowed for up to 77% of the variance in soft contact lens fit, and up to almost 90% to be predicted when used in conjunction with OCT. The investigations provided further insight into the ocular topography and factors affecting soft contact lens fit.
Resumo:
Purpose: Tilted disc syndrome has been described to be associated with obliquely directed long axis of the disc, oblique direction of vessels, retinal pigment epithelial conus, hypoplasia of retina, visual field defects and myopic astigmatism. This prospective study looks at corneal astigmatism in eyes with a tilted optic disc. Refractive errors in these eyes were also analyzed. Methods: Patients with tilted optic discs were identified prospectively by clinical evaluation (BI, VK). All the patients with obliquely directed long axis of the disc, oblique direction of vessels and retinal pigment epithelial conus were included in the study. Best corrected visual acuity, slit-lamp examination, optic disc measurements, keratometry and refraction were recorded. Results: Twenty four patients (41 eyes) were recruited for the study. Eighteen (75%) patients had bilateral tilted optic discs. Eighteen patients (75%) were females and six (25%) were males. The mean age was 62 years(range 9 – 86 years). 76% of the patients were myopic and 24% hypermetropic. The mean spherical equivalent was –7.49 dioptres (SD 1.7D, range +6D to -17D). The mean corneal astigmatism was 1.09D (SD 0.9D, range 0.25D to 3.80D). The 6 patients who had unilateral, untilted discs were used as a control group to compare their mean corneal astigmatism (1.32 D) with the rest. Student "t" test was performed. ("p" = 0.49). Conclusions: In our study, tilted disc syndrome was found to be largely bilateral and more commonly seen in females. Myopia was the commonest refractive error associated with this clinical condition. However, 24% of patients in this series were hypermetropic. No correlation between the tilting of the optic disc and significant corneal astigmatism was noted as previously reported.