34 resultados para joint time-frequency analysis
em Aston University Research Archive
Resumo:
Background Autologous chondrocyte implantation is a cell therapeutic approach for the treatment of chondral and osteochondral defects in the knee joint. The authors previously reported on the histologic and radiologic outcome of autologous chondrocyte implantation in the short- to midterm, which yields mixed results. Purpose The objective is to report on the clinical outcome of autologous chondrocyte implantation for the knee in the midterm to long term. Study Design Cohort study; Level of evidence, 3. Methods Eighty patients who had undergone autologous chondrocyte implantation of the knee with mid- to long-term follow-up were analyzed. The mean patient age was 34.6 years (standard deviation, 9.1 years), with 63 men and 17 women. Seventy-one patients presented with a focal chondral defect, with a median defect area of 4.1 cm2 and a maximum defect area of 20 cm2. The modified Lysholm score was used as a self-reporting clinical outcome measure to determine the following: (1) What is the typical pattern over time of clinical outcome after autologous chondrocyte implantation; and (2) Which patient-related predictors for the clinical outcome pattern can be used to improve patient selection for autologous chondrocyte implantation? Results The average follow-up time was 5 years (range, 2.7–9.3). Improvement in clinical outcome was found in 65 patients (81%), while 15 patients (19%) showed a decline in outcome. The median preoperative Lysholm score of 54 increased to a median of 78 points. The most rapid improvement in Lysholm score was over the 15-month period after operation, after which the Lysholm score remained constant for up to 9 years. The authors were unable to identify any patient-specific factors (ie, age, gender, defect size, defect location, number of previous operations, preoperative Lysholm score) that could predict the change in clinical outcome in the first 15 months. Conclusion Autologous chondrocyte implantation seems to provide a durable clinical outcome in those patients demonstrating success at 15 months after operation. Comparisons between other outcome measures of autologous chondrocyte implantation should be focused on the clinical status at 15 months after surgery. The patient-reported clinical outcome at 15 months is a major predictor of the mid- to long-term success of autologous chondrocyte implantation.
Resumo:
An inherent weakness in the management of large scale projects is the failure to achieve the scheduled completion date. When projects are planned with the objective of time achievement, the initial planning plays a vital role in the successful achievement of project deadlines. Cost and quality are additional priorities when such projects are being executed. This article proposes a methodology for achieving time duration of a project through risk analysis with the application of a Monte Carlo simulation technique. The methodology is demonstrated using a case application of a cross-country petroleum pipeline construction project.
Resumo:
The major role of information and communication technology (ICT) in the new economy is well documented: countries worldwide are pouring resources into their ICT infrastructure despite the widely acknowledged “productivity paradox”. Evaluating the contribution of ICT investments has become an elusive but important goal of IS researchers and economists. But this area of research is fraught with complexity and we have used Solow's Residual together with time-series analysis tools to overcome some methodological inadequacies of previous studies. Using this approach, we conduct a study of 20 countries to determine if there was empirical evidence to support claims that ICT investments are worthwhile. The results show that ICT contributes to economic growth in many developed countries and newly industrialized economies (NIEs), but not in developing countries. We finally suggest ICT-complementary factors, in an attempt to rectify possible flaws in ICT policies as a contribution towards improvement in global productivity.
Resumo:
Liposomes have been imaged using a plethora of techniques. However, few of these methods offer the ability to study these systems in their natural hydrated state without the requirement of drying, staining, and fixation of the vesicles. However, the ability to image a liposome in its hydrated state is the ideal scenario for visualization of these dynamic lipid structures and environmental scanning electron microscopy (ESEM), with its ability to image wet systems without prior sample preparation, offers potential advantages to the above methods. In our studies, we have used ESEM to not only investigate the morphology of liposomes and niosomes but also to dynamically follow the changes in structure of lipid films and liposome suspensions as water condenses on to or evaporates from the sample. In particular, changes in liposome morphology were studied using ESEM in real time to investigate the resistance of liposomes to coalescence during dehydration thereby providing an alternative assay of liposome formulation and stability. Based on this protocol, we have also studied niosome-based systems and cationic liposome/DNA complexes. Copyright © Informa Healthcare.
Resumo:
The spreading time of liquid binder droplet on the surface a primary particle is analyzed for Fluidized Bed Melt Granulation (FBMG). As discussed in the first paper of this series (Chua et al., in press) the droplet spreading rate has been identified as one of the important parameters affecting the probability of particles aggregation in FBMG. In this paper, the binder droplet spreading time has been estimated using Computational Fluid Dynamic modeling (CFD) based on Volume of Fluid approach (VOF). A simplified analytical solution has been developed and tested to explore its validity for predicting the spreading time. For the purpose of models validation, the droplet spreading evolution was recorded using a high speed video camera. Based on the validated model, a generalized correlative equation for binder spreading time is proposed. For the operating conditions considered here, the spreading time for Polyethylene Glycol (PEG1500) binder was found to fall within the range of 10-2 to 10-5 s. The study also included a number of other common binders used in FBMG. The results obtained here will be further used in paper III, where the binder solidification rate is discussed.
Resumo:
In series I and II of this study ([Chua et al., 2010a] and [Chua et al., 2010b]), we discussed the time scale of granule–granule collision, droplet–granule collision and droplet spreading in Fluidized Bed Melt Granulation (FBMG). In this third one, we consider the rate at which binder solidifies. Simple analytical solution, based on classical formulation for conduction across a semi-infinite slab, was used to obtain a generalized equation for binder solidification time. A multi-physics simulation package (Comsol) was used to predict the binder solidification time for various operating conditions usually considered in FBMG. The simulation results were validated with experimental temperature data obtained with a high speed infrared camera during solidification of ‘macroscopic’ (mm scale) droplets. For the range of microscopic droplet size and operating conditions considered for a FBMG process, the binder solidification time was found to fall approximately between 10-3 and 10-1 s. This is the slowest compared to the other three major FBMG microscopic events discussed in this series (granule–granule collision, granule–droplet collision and droplet spreading).
Resumo:
At present there is no standard assessment method for rating and comparing the quality of synthesized speech. This study assesses the suitability of Time Frequency Warping (TFW) modulation for use as a reference device for assessing synthesized speech. Time Frequency Warping modulation introduces timing errors into natural speech that produce perceptual errors similar to those found in synthetic speech. It is proposed that TFW modulation used in conjunction with a listening effort test would provide a standard assessment method for rating the quality of synthesized speech. This study identifies the most suitable TFW modulation variable parameter to be used for assessing synthetic speech and assess the results of several assessment tests that rate examples of synthesized speech in terms of the TFW variable parameter and listening effort. The study also attempts to identify the attributes of speech that differentiate synthetic, TFW modulated and natural speech.
Resumo:
Fluidized bed spray granulators (FBMG) are widely used in the process industry for particle size growth; a desirable feature in many products, such as granulated food and medical tablets. In this paper, the first in a series of four discussing the rate of various microscopic events occurring in FBMG, theoretical analysis coupled with CFD simulations have been used to predict granule–granule and droplet–granule collision time scales. The granule–granule collision time scale was derived from principles of kinetic theory of granular flow (KTGF). For the droplet–granule collisions, two limiting models were derived; one is for the case of fast droplet velocity, where the granule velocity is considerable lower than that of the droplet (ballistic model) and another for the case where the droplet is traveling with a velocity similar to the velocity of the granules. The hydrodynamic parameters used in the solution of the above models were obtained from the CFD predictions for a typical spray fluidized bed system. The granule–granule collision rate within an identified spray zone was found to fall approximately within the range of 10-2–10-3 s, while the droplet–granule collision was found to be much faster, however, slowing rapidly (exponentially) when moving away from the spray nozzle tip. Such information, together with the time scale analysis of droplet solidification and spreading, discussed in part II and III of this study, are useful for probability analysis of the various event occurring during a granulation process, which then lead to be better qualitative and, in part IV, quantitative prediction of the aggregation rate.
Resumo:
By spectral analysis, and using joint time-frequency representations, we present the theoretical basis to design invariant band-limited Airy pulses with an arbitrary degree of robustness, and an arbitrary range of single mode fiber chromatic dispersion. The numerically simulated examples confirm the theoretically predicted pulse partial invariance in the propagation of the pulse in the fiber.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
We propose and experimentally demonstrate a new method to extend the range of Brillouin optical time domain analysis (BOTDA) systems. It exploits the virtual transparency created by second-order Raman pumping in optical fibers. The idea is theoretically analyzed and experimentally demonstrated in a 50 km fiber. By working close to transparency, we also show that the measurement length of the BOTDA can be increased up to 100 km with 2 meter resolution. We envisage extensions of this technique to measurement lengths well beyond this value, as long as the issue of relative intensity noise (RIN) of the primary Raman pump can be avoided. © 2010 Optical Society of America.
Resumo:
The goal of this paper is to model normal airframe conditions for helicopters in order to detect changes. This is done by inferring the flying state using a selection of sensors and frequency bands that are best for discriminating between different states. We used non-linear state-space models (NLSSM) for modelling flight conditions based on short-time frequency analysis of the vibration data and embedded the models in a switching framework to detect transitions between states. We then created a density model (using a Gaussian mixture model) for the NLSSM innovations: this provides a model for normal operation. To validate our approach, we used data with added synthetic abnormalities which was detected as low-probability periods. The model of normality gave good indications of faults during the flight, in the form of low probabilities under the model, with high accuracy (>92 %). © 2013 IEEE.
Resumo:
Background The somatosensory cortex has been inconsistently activated in pain studies and the functional properties of subregions within this cortical area are poorly understood. To address this we used magnetoencephalography (MEG), a brain imaging technique capable of recording changes in cortical neural activity in real-time, to investigate the functional properties of the somatosensory cortex during different phases of the visceral pain experience. Methods In eight participants (4 male), 151-channel whole cortex MEG was used to detect cortical neural activity during 25 trials lasting 20 seconds each. Each trial comprised four separate periods of 5 seconds in duration. During each of the periods, different visual cues were presented, indicating that period 1=rest, period 2=anticipation, period 3=pain and period 4=post pain. During period 3, participants received painful oesophageal balloon distensions (four at 1 Hz). Regions of cortical activity were identified using Synthetic Aperture Magnetometry (SAM) and by the placement of virtual electrodes in regions of interest within the somatosensory cortex, time-frequency wavelet plots were generated. Results SAM analysis revealed significant activation with the primary (S1) and secondary (S2) somatosensory cortices. The time-frequency wavelet spectrograms showed that activation in S1 increased during the anticipation phase and continued during the presentation of the stimulus. In S2, activation was tightly time and phase-locked to the stimulus within the pain period. Activations in both regions predominantly occurred within the 10–15 Hz and 20–30 Hz frequency bandwidths. Discussion These data are consistent with the role of S1 and S2 in the sensory discriminatory aspects of pain processing. Activation of S1 during anticipation and then pain may be linked to its proposed role in attentional as well as sensory processing. The stimulus-related phasic activity seen in S2 demonstrates that this region predominantly encodes information pertaining to the nature and intensity of the stimulus.
Resumo:
Neuronal operations associated with the top-down control process of shifting attention from one locus to another involve a network of cortical regions, and their influence is deemed fundamental to visual perception. However, the extent and nature of these operations within primary visual areas are unknown. In this paper, we used magnetoencephalography (MEG) in combination with magnetic resonance imaging (MRI) to determine whether, prior to the onset of a visual stimulus, neuronal activity within early visual cortex is affected by covert attentional shifts. Time/frequency analyses were used to identify the nature of this activity. Our results show that shifting attention towards an expected visual target results in a late-onset (600 ms postcue onset) depression of alpha activity which persists until the appearance of the target. Independent component analysis (ICA) and dipolar source modeling confirmed that the neuronal changes we observed originated from within the calcarine cortex. Our results further show that the amplitude changes in alpha activity were induced not evoked (i.e., not phase-locked to the cued attentional task). We argue that the decrease in alpha prior to the onset of the target may serve to prime the early visual cortex for incoming sensory information. We conclude that attentional shifts affect activity within the human calcarine cortex by altering the amplitude of spontaneous alpha rhythms and that subsequent modulation of visual input with attentional engagement follows as a consequence of these localized changes in oscillatory activity. © 2005 Elsevier B.V. All rights reserved.