16 resultados para isothermal thermo-gravimetric analysis
em Aston University Research Archive
Resumo:
Fifteen Miscanthus genotypes grown in five locations across Europe were analysed to investigate the influence of genetic and environmental factors on cell wall composition. Chemometric techniques combining near infrared reflectance spectroscopy and conventional chemical analyses were used to construct calibration models for determination of acid detergent lignin, acid detergent fibre, and neutral detergent fibre from sample spectra. The developed equations were shown to predict cell wall components with a good degree of accuracy and significant genetic and environmental variation was identified. The influence of nitrogen and potassium fertiliser on the dry matter yield and cell wall composition of M. x giganteus was investigated. A detrimental affect on feedstock quality was observed to result from application of these inputs which resulted in an overall reduction in concentrations of cell wall components and increased accumulation of ash within the biomass. Pyrolysis-gas chromatography-mass spectrometry and thermo-gravimetric analysis indicates that genotypes other than the commercially cultivated M. x giganteus have potential for use in energy conversion processes and in the bio-refining. The yields and quality parameters of the pyrolysis liquids produced from Miscanthus compared favourably with that produced from SRC willow and produced a more stable pyrolysis liquid with a higher lower heating value. Overall, genotype had a more significant effect on cell wall composition than environment. This indicates good potential for dissection of this trait by QTL analysis and also for plant breeding to produce new genotypes with improved feedstock characteristics for energy conversion.
Resumo:
The oxidation behaviour of porous, sintered iron was studied by thermo-gravimetric analysis (TGA), at temperatures between 300oC and 700oC, in a flowing atmosphere of 20% O2/80% N2. Samples for TGA tests were compacted from pure iron powder, at 150MPa to 550MPa, and vacuum sintered at 1120oC. The mass gain of samples during oxidation was recorded continuously for a period of 24 hours. It was found that the oxidation mass gain of PM samples depended on the permeability of the pore structure and the temperature. At low temperatures, the oxidising gas was able to permeate through the pore structure, causing the oxidation of a large active surface area. At high temperatures the active surface area was smaller, because oxygen diffusing into the pore structure, from the external atmosphere, was adsorbed by pore surfaces close to the external surface of the compact. Although the weight of the external oxide scale on compacts increased with increasing oxidation temperature, the absence of oxide in the core porosity in compacts oxidised at higher temperatures resulted in smaller mass gains than were observed for compacts oxidised at lower temperatures. The heat generated by the oxidation of the large active surface areas of porous samples was studied by thermo-calorimetric analysis (TCA). It was determined that this phenomenon could raise the core temperature of samples significantly above the ambient furnace temperature, and affecting the morphology of the oxide scale formed. The effects (on oxidation behaviour at 500oC) of small, elemental alloy additions of Al, Cu, P and Si to pure iron powder were studied. It was found that elements that promote pore rounding during sintering caused a significant reduction in the mass gain rate of the PM alloys, compared to the PM pure iron. The oxidation resistance due to these elements prevented pore closure by oxide growth, so that the active surface area of these PM alloys remained high. The PM alloys were also studied by thermo-mechanical analysis (TMA, dilatometry), to determine their dimensional stability during sintering and subsequent elevated temperature service. The oxidation experiment was augmented with optical and electron microscopy, and X-ray analysis of alloy and scale compositions.
Resumo:
Brewers spent grain (BSG) is a widely available feedstock representing approximately 85% of the total by-products generated in the brewing industry. This is currently either disposed of to landfill or used as cattle feed due to its high protein content. BSG has received little or no attention as a potential energy resource, but increasing disposal costs and environmental constraints are now prompting the consideration of this. One possibility for the utilisation of BSG for energy is via intermediate pyrolysis to produce gases, vapours and chars. Intermediate pyrolysis is characterised by indirect heating in the absence of oxygen for short solids residence times of a few minutes, at temperatures of 350-450 °C. In the present work BSG has been characterised by chemical, proximate, ultimate and thermo-gravimetric analysis. Intermediate pyrolysis of BSG at 450 °C was carried out using a twin coaxial screw reactor known as Pyroformer to give yields of char 29%, 51% of bio-oil and 19% of permanent gases. The bio-oil liquid was found to separate in to an aqueous phase and organic phase. The organic phase contained viscous compounds that could age over time leading to solid tars that can present problems in CHP application. The quality of the pyrolysis vapour products before quenching can be upgraded to achieve much improved suitability as a fuel by downstream catalytic reforming. A Bench Scale batch pyrolysis reactor has then been used to pyrolyse small samples of BSG under a range of conditions of heating rate and temperature simulating the Pyroformer. A small catalytic reformer has been added downstream of the reactor in which the pyrolysis vapours can be further cracked and reformed. A commercial reforming nickel catalyst was used at 500, 750 and 850 °C at a space velocity about 10,000 L/h with and without the addition of steam. Results are presented for the properties of BSG, and the products of the pyrolysis process both with and without catalytic post-processing. Results indicate that catalytic reforming produced a significant increase in permanent gases mainly (H2 and CO) with H2 content exceeding 50 vol% at higher reforming temperatures. Bio-oil yield decreased significantly as reforming temperature increased with char remaining the same as pyrolysis condition remained unchanged. The process shows an increase in heating value for the product gas ranging between 10.8-25.2 MJ/m as reforming temperature increased. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Aquatic biomass is seen as one of the major feedstocks to overcome difficulties associated with 1st generation biofuels, such as competition with food production, change of land use and further environmental issues. Although, this finding is widely accepted only little work has been carried out to investigate thermo-chemical conversion of algal specimen to produce biofuels, power and heat. This work aims at contributing fundamental knowledge for thermo-chemical processing of aquatic biomass via intermediate pyrolysis. Therefore, it was necessary to install and commission an analytical pyrolysis apparatus which facilitates intermediate pyrolysis process conditions as well as subsequent separation and detection of pyrolysates (Py- GC/MS). In addition, a methodology was established to analyse aquatic biomass under intermediate conditions by Thermo-Gravimetric Analysis (TGA). Several microalgae (e.g. Chlamydomonas reinhardtii, Chlorella vulgaris) and macroalgae specimen (e.g. Fucus vesiculosus) from main algal divisions and various natural habitats (fresh and saline water, temperate and polar climates) were chosen and their thermal degradation under intermediate pyrolysis conditions was studied. In addition, it was of interest to examine the contribution of biochemical constituents of algal biomass onto the chemical compounds contained in pyrolysates. Therefore, lipid and protein fractions were extracted from microalgae biomass and analysed separately. Furthermore, investigations of residual algal materials obtained by extraction of high valuable compounds (e.g. lipids, proteins, enzymes) were included to evaluate their potential for intermediate pyrolysis processing. On basis of these thermal degradation studies, possible applications of algal biomass and from there derived materials in the Bio-thermal Valorisation of Biomass-process (BtVB-process) are presented. It was of interest to evaluate the combination of the production of high valuable products and bioenergy generation derived by micro- and macro algal biomass.
Resumo:
Stone-fruit activated carbon (SAC) and modified versions containing acidic oxygen and basic nitrogen groups have been used to prepare palladium catalysts by wet impregnation. Carbon supports and catalysts are investigated by thermo-gravimetric analysis, TPD, oxygen chemisorption, TEM and XPS. The influence of the nature of the functional groups on the dispersion and oxidation state of palladium and its activity in hydrogen oxidation is investigated. Pd dispersion is found to increase with the basic strength of functional groups on the support. XPS reveals that introduction of amine groups in SAC results in an increased proportion of Pd0, resistant to re-oxidation. Palladium catalysts supported on activated carbon modified by diethylamine groups are found to exhibit the highest metal dispersion and greatest activity in hydrogen oxidation. © 2007 Elsevier B.V. All rights reserved.
Resumo:
Different species and genotypes of Miscanthus were analysed to determine the influence of genotypic variation and harvest time on cell wall composition and the products which may be refined via pyrolysis. Wet chemical, thermo-gravimetric (TGA) and pyrolysis-gas chromatography–mass spectrometry (Py-GC–MS) methods were used to identify the main pyrolysis products and determine the extent to which genotypic differences in cell wall composition influence the range and yield of pyrolysis products. Significant genotypic variation in composition was identified between species and genotypes, and a clear relationship was observed between the biomass composition, yields of pyrolysis products, and the composition of the volatile fraction. Results indicated that genotypes other than the commercially cultivated Miscanthus x giganteus may have greater potential for use in bio-refining of fuels and chemicals and several genotypes were identified as excellent candidates for the generation of genetic mapping families and the breeding of new genotypes with improved conversion quality characteristics.
Resumo:
The structure and thermal properties of yttrium alumino-phosphate glasses, of nominal composition (Y2O3)(0.31-z)(Al2O3)(z)(P2O5)(0.69) with 0 less than or similar to z less than or similar to 0.31, were studied by using a combination of neutron diffraction, Al-27 and P-31 magic angle spinning nuclear magnetic resonance, differential scanning calorimetry and thermal gravimetric analysis methods. The Vickers hardness of the glasses was also measured. The data are compared to those obtained for pseudo-binary Al2O3-P2O5 glasses and the structure of all these materials is rationalized in terms of a generic model for vitreous phosphate materials in which Y3+ and Al3+ act as modifying cations that bind only to the terminal (non-bridging) oxygen atoms of PO4 tetrahedra. The results are used to help elucidate the phenomenon of rare-earth clustering in phosphate glasses which can be reduced by substituting Al3+ ions for rare-earth R3+ ions at fixed modifier content.
Resumo:
Quantitative analysis of solid-state processes from isothermal microcalorimetric data is straightforward if data for the total process have been recorded and problematic (in the more likely case) when they have not. Data are usually plotted as a function of fraction reacted (α); for calorimetric data, this requires knowledge of the total heat change (Q) upon completion of the process. Determination of Q is difficult in cases where the process is fast (initial data missing) or slow (final data missing). Here we introduce several mathematical methods that allow the direct calculation of Q by selection of data points when only partial data are present, based on analysis with the Pérez-Maqueda model. All methods in addition allow direct determination of the reaction mechanism descriptors m and n and from this the rate constant, k. The validity of the methods is tested with the use of simulated calorimetric data, and we introduce a graphical method for generating solid-state power-time data. The methods are then applied to the crystallization of indomethacin from a glass. All methods correctly recovered the total reaction enthalpy (16.6 J) and suggested that the crystallization followed an Avrami model. The rate constants for crystallization were determined to be 3.98 × 10-6, 4.13 × 10-6, and 3.98 × 10 -6 s-1 with methods 1, 2, and 3, respectively. © 2010 American Chemical Society.
Resumo:
The thesis is divided into four chapters. They are: introduction, experimental, results and discussion about the free ligands and results and discussion about the complexes. The First Chapter, the introductory chapter, is a general introduction to the study of solid state reactions. The Second Chapter is devoted to the materials and experimental methods that have been used for carrying out tile experiments. TIle Third Chapter is concerned with the characterisations of free ligands (Picolinic acid, nicotinic acid, and isonicotinic acid) by using elemental analysis, IR spectra, X-ray diffraction, and mass spectra. Additionally, the thermal behaviour of free ligands in air has been studied by means of thermogravimetry (TG), derivative thermogravimetry (DTG), and differential scanning calorimetry (DSC) measurements. The behaviour of thermal decomposition of the three free ligands was not identical Finally, a computer program has been used for kinetic evaluation of non-isothermal differential scanning calorimetry data according to a composite and single heating rate methods in comparison with the methods due to Ozawa and Kissinger methods. The most probable reaction mechanism for the free ligands was the Avrami-Erofeev equation (A) that described the solid-state nucleation-growth mechanism. The activation parameters of the decomposition reaction for free ligands were calculated and the results of different methods of data analysis were compared and discussed. The Fourth Chapter, the final chapter, deals with the preparation of cobalt, nickel, and copper with mono-pyridine carboxylic acids in aqueous solution. The prepared complexes have been characterised by analyses, IR spectra, X-ray diffraction, magnetic moments, and electronic spectra. The stoichiometry of these compounds was ML2x(H20), (where M = metal ion, L = organic ligand and x = water molecule). The environments of cobalt, nickel, and copper nicotinates and the environments of cobalt and nickel picolinates were octahedral, whereas the environment of copper picolinate [Cu(PA)2] was tetragonal. However, the environments of cobalt, nickel, and copper isonicotinates were polymeric octahedral structures. The morphological changes that occurred throughout the decomposition were followed by SEM observation. TG, DTG, and DSC measurements have studied the thermal behaviour of the prepared complexes in air. During the degradation processes of the hydrated complexes, the crystallisation water molecules were lost in one or two steps. This was also followed by loss of organic ligands and the metal oxides remained. Comparison between the DTG temperatures of the first and second steps of the dehydration suggested that the water of crystallisation was more strongly bonded with anion in Ni(II) complexes than in the complexes of Co(II) and Cu(II). The intermediate products of decomposition were not identified. The most probable reaction mechanism for the prepared complexes was also Avrami-Erofeev equation (A) characteristic of solid-state nucleation-growth mechanism. The tempemture dependence of conductivity using direct current was determined for cobalt, nickel, Cl.nd copper isonicotinates. An activation energy (ΔΕ), the activation energy (ΔΕ ) were calculated.The ternperature and frequency dependence of conductivity, the frequency dependence of dielectric constant, and the dielectric loss for nickel isonicotinate were determined by using altemating current. The value of s paralneter and the value of'density of state [N(Ef)] were calculated. Keyword Thermal decomposition, kinetic, electrical conduclion, pyridine rnono~ carboxylic acid, cOlnplex, transition metal compJex.
Resumo:
Algae are a new potential biomass for energy production but there is limited information on their pyrolysis and kinetics. The main aim of this thesis is to investigate the pyrolytic behaviour and kinetics of Chlorella vulgaris, a green microalga. Under pyrolysis conditions, these microalgae show their comparable capabilities to terrestrial biomass for energy and chemicals production. Also, the evidence from a preliminary pyrolysis by the intermediate pilot-scale reactor supports the applicability of these microalgae in the existing pyrolysis reactor. Thermal decomposition of Chlorella vulgaris occurs in a wide range of temperature (200-550°C) with multi-step reactions. To evaluate the kinetic parameters of their pyrolysis process, two approaches which are isothermal and non-isothermal experiments are applied in this work. New developed Pyrolysis-Mass Spectrometry (Py-MS) technique has the potential for isothermal measurements with a short run time and small sample size requirement. The equipment and procedure are assessed by the kinetic evaluation of thermal decomposition of polyethylene and lignocellulosic derived materials (cellulose, hemicellulose, and lignin). In the case of non-isothermal experiment, Thermogravimetry- Mass Spectrometry (TG-MS) technique is used in this work. Evolved gas analysis provides the information on the evolution of volatiles and these data lead to a multi-component model. Triplet kinetic values (apparent activation energy, pre-exponential factor, and apparent reaction order) from isothermal experiment are 57 (kJ/mol), 5.32 (logA, min-1), 1.21-1.45; 9 (kJ/mol), 1.75 (logA, min-1), 1.45 and 40 (kJ/mol), 3.88 (logA, min-1), 1.45- 1.15 for low, middle and high temperature region, respectively. The kinetic parameters from non-isothermal experiment are varied depending on the different fractions in algal biomass when the range of apparent activation energies are 73-207 (kJ/mol); pre-exponential factor are 5-16 (logA, min-1); and apparent reaction orders are 1.32–2.00. The kinetic procedures reported in this thesis are able to be applied to other kinds of biomass and algae for future works.
Resumo:
Fundamental analytical pyrolysis studies of biomass from Polar seaweeds, which exhibit a different biomass composition than terrestrial and micro-algae biomass were performed via thermogravimetric analysis (TGA) and pyrolysis-gas chromatography/mass-spectrometry (Py-GC/MS). The main reason for this study is the adaptation of these species to very harsh environments making them an interesting source for thermo-chemical processing for bioenergy generation and production of biochemicals via intermediate pyrolysis. Several macroalgal species from the Arctic region Kongsfjorden, Spitsbergen/Norway (Prasiola crispa, Monostroma arcticum, Polysiphonia arctica, Devaleraea ramentacea, Odonthalia dentata, Phycodrys rubens, Sphacelaria plumosa) and from the Antarctic peninsula, Potter Cove King George Island (Gigartina skottsbergii, Plocamium cartilagineum, Myriogramme manginii, Hymencladiopsis crustigena, Kallymenia antarctica) were investigated under intermediate pyrolysis conditions. TGA of the Polar seaweeds revealed three stages of degradation representing dehydration, devolatilization and decomposition of carbonaceous solids. The maximum degradation temperatures Prasiola crispa were observed within the range of 220-320 C and are lower than typically obtained by terrestrial biomass, due to divergent polysaccharide compositions. Biochar residues accounted for 33-46% and ash contents of 27-45% were obtained. Identification of volatile products by Py-GC/MS revealed a complexity of generated chemical compounds and significant differences between the species. A widespread occurrence of aromatics (toluene, styrene, phenol and 4-methylphenol), acids (acetic acid, benzoic acid alkyl ester derivatives, 2-propenoic acid esters and octadecanoic acid octyl esters) in pyrolysates was detected. Ubiquitous furan-derived products included furfural and 5-methyl-2-furaldehyde. As a pyran-derived compound maltol was obtained by one red algal species (P. rubens) and the monosaccharide d-allose was detected in pyrolysates in one green algal (P. crispa). Further unique chemicals detected were dianhydromannitol from brown algae and isosorbide from green algae biomass. In contrast, the anhydrosugar levoglucosan and the triterpene squalene was detected in a large number of pyrolysates analysed. © 2013 Elsevier B.V. All rights reserved.
Resumo:
The influence of the comonomer content in a series of metallocene-based ethylene-1-octene copolymers (m-LLDPE) on thermo-mechanical, rheological, and thermo-oxidative behaviours during melt processing were examined using a range of characterisation techniques. The amount of branching was calculated from 13C NMR and studies using differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were employed to determine the effect of short chain branching (SCB, comonomer content) on thermal and mechanical characteristics of the polymer. The effect of melt processing at different temperatures on the thermo-oxidative behaviour of the polymers was investigated by examining the changes in rheological properties, using both melt flow and capillary rheometry, and the evolution of oxidation products during processing using infrared spectroscopy. The results show that the comonomer content and catalyst type greatly affect thermal, mechanical and oxidative behaviour of the polymers. For the metallocene polymer series, it was shown from both DSC and DMA that (i) crystallinity and melting temperatures decreased linearly with comonomer content, (ii) the intensity of the ß-transition increased, and (iii) the position of the tan δmax peak corresponding to the a-transition shifted to lower temperatures, with higher comonomer content. In contrast, a corresponding Ziegler polymer containing the same level of SCB as in one of the m-LLDPE polymers, showed different characteristics due to its more heterogeneous nature: higher elongational viscosity, and a double melting peak with broader intensity that occurred at higher temperature (from DSC endotherm) indicating a much broader short chain branch distribution. The thermo-oxidative behaviour of the polymers after melt processing was similarly influenced by the comonomer content. Rheological characteristics and changes in concentrations of carbonyl and the different unsaturated groups, particularly vinyl, vinylidene and trans-vinylene, during processing of m-LLDPE polymers, showed that polymers with lower levels of SCB gave rise to predominantly crosslinking reactions at all processing temperatures. By contrast, chain scission reactions at higher processing temperatures became more favoured in the higher comonomer-containing polymers. Compared to its metallocene analogue, the Ziegler polymer showed a much higher degree of crosslinking at all temperatures because of the high levels of vinyl unsaturation initially present.
Resumo:
The kinetic parameters of the pyrolysis of miscanthus and its acid hydrolysis residue (AHR) were determined using thermogravimetric analysis (TGA). The AHR was produced at the University of Limerick by treating miscanthus with 5 wt.% sulphuric acid at 175 °C as representative of a lignocellulosic acid hydrolysis product. For the TGA experiments, 3 to 6 g of sample, milled and sieved to a particle size below 250 μm, were placed in the TGA ceramic crucible. The experiments were carried out under non-isothermal conditions heating the samples from 50 to 900 °C at heating rates of 2.5, 5, 10, 17 and 25 °C/min. The activation energy (EA) of the decomposition process was determined from the TGA data by differential analysis (Friedman) and three isoconversional methods of integral analysis (Kissinger–Akahira–Sunose, Ozawa–Flynn–Wall, Vyazovkin). The activation energy ranged from 129 to 156 kJ/mol for miscanthus and from 200 to 376 kJ/mol for AHR increasing with increasing conversion. The reaction model was selected using the non-linear least squares method and the pre-exponential factor was calculated from the Arrhenius approximation. The results showed that the best fitting reaction model was the third order reaction for both feedstocks. The pre-exponential factor was in the range of 5.6 × 1010 to 3.9 × 10+ 13 min− 1 for miscanthus and 2.1 × 1016 to 7.7 × 1025 min− 1 for AHR.
Resumo:
There are many steps involved in developing a drug candidate into a formulated medicine and many involve analysis of chemical interaction or physical change. Calorimetry is particularly suited to such analyses as it offers the capacity to observe and quantify both chemical and physical changes in virtually any sample. Differential scanning calorimetry (DSC) is ubiquitous in pharmaceutical development, but the related technique of isothermal calorimetry (IC) is complementary and can be used to investigate a range of processes not amenable to analysis by DSC. Typically, IC is used for longer-term stability indicating or excipient compatibility assays because both the temperature and relative humidity (RH) in the sample ampoule can be controlled. However, instrument design and configuration, such as titration, gas perfusion or ampoule-breaking (solution) calorimetry, allow quantification of more specific values, such as binding enthalpies, heats of solution and quantification of amorphous content. As ever, instrument selection, experiment design and sample preparation are critical to ensuring the relevance of any data recorded. This article reviews the use of isothermal, titration, gas-perfusion and solution calorimetry in the context of pharmaceutical development, with a focus on instrument and experimental design factors, highlighted with examples from the recent literature. © 2011 Elsevier B.V.
Resumo:
In brackish groundwater desalination, high recovery ratio (of fresh water from saline feed) is desired to minimise concentrate reject. To this effect, previous studies have developed a batch reverse osmosis (RO) desalination system, DesaLink, which proposed to expand steam in a reciprocating piston cylinder and transmit the driving force through a linkage crank mechanism to pressurise batches of saline water (recirculating) in a water piston cylinder unto RO membranes. However, steam is largely disadvantaged at operation from low temperature (< 150oC) thermal sources; and organic working fluids are more viable, though, the obtainable thermal cycle efficiencies are generally low with low temperatures. Consequently, this thesis proposed to investigate the use of organic working fluid Rankine cycle (ORC) with isothermal expansion, to drive the DesaLink machine, at improved thermal efficiency from low temperature thermal sources. Following a review of the methods of achieving isothermal expansion, ‘liquid flooded expansion’ and ‘expansion chamber surface heating’ were identified as potential alternative methods. Preliminary experimental comparative analysis of variants of the heated expansion chamber technique of effecting isothermal expansion favoured a heated plain wall technique, and as such was adopted for further optimisation and development. Further, an optimised isothermal ORC engine was built and tested at < 95oC heat source temperature, with R245fa working fluid – which was selected from 16 working fluids that were analysed for isothermal operation. Upon satisfactory performance of the test engine, a larger (10 times) version was built and coupled to drive the DesaLink system. Operating the integrated ORC-RO DesaLink system, gave freshwater (approximately 500 ppm) production of about 12 litres per hour (from 4000 ppm feed water) at a recovery ratio of about 0.7 and specific energy consumption of 0.34 kWh/m3; and at a thermal efficiency of 7.7%. Theoretical models characterising the operation and performance of the integrated system was developed and utilised to access the potential field performance of the system, when powered by two different thermal energy sources – solar and industrial bakery waste heat – as case studies.