20 resultados para iron-based alloy

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of ultrasonic agitation on deposition from two iron group alloy plating solutions, nickel-cobalt and bright nickel-iron, have been studied. Comparison has been made with deposits plated from the same solutions using controlled air agitation. The ultrasonic equipment employed had a fixed frequency of 13 KHz but the power output from each transducer was variable up to a maximum of 350 watts. The effects of air and ultrasonic agitation on hardness, ductility, tensile strength, composition, structure, surface topography, limiting current density, cathode current efficiency and macro-throwing power were determined. Transmission and scanning electron microscopy, electron-probe microanalysis and atomic absorption spectrophotometry have been employed to study the nickel alloy deposits produced. The results obtained show that the use of Ultrasonics increased significantly the hardness of both alloy deposits and altered their composition by decreasing the cobalt and iron contents from nickel-cobalt and nickeliron solutions respectively. The ductility of coatings improved but the tensile strength did not change very much. Ultrasonic agitation gave larger grained deposits than air and they seemed to have a lower stress. Dull cobalt-nickel deposits had a similar pyramidal surface topography regardless of the type of agitation but the bright appearance of the nickel-iron was destroyed by ultrasonic agitation; an unusual ribbed pattern was produced. The use of ultrasonic agitation permitted approximately a twofold increase in the plating current density at which sound deposits could be achieved but there was only a slight increase in cathode current efficiency. Macro-throwing power of the solutions was increased slightly by the use of ultrasonic agitation. ultrasonic agitation is an expensive means of agitating plating Solutions and would be worthwhile only if significant improvements in properties could be achieved. The simultaneous improvement in hardness and ductility is a novel feature that should have useful engineering applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The deposition and properties of electroless nickel composite coatings containing graphite, PTFE and chromium were investigated. Solutions were developed for the codeposition of graphite and chromium with electroless nickel. Solutions for the deposition of graphite contained heavy metal ions for stability, with non-ionic and anionic surfactants to provide wetting and dispersion of the particles. Stability for the codeposition of chromium particles was achieved by oxidation of the chromium. Thin oxide layers of 200 nm thick prevented initiation of the electroless reaction onto the chromium. A mechanism for the formation of electroless composite coatings was considered based on the physical adsorption of particles and as a function of the adsorption of charged surfactants and metal cations from solution. The influence of variables such as particle concentration in solution, particle size, temperature, pH, and agitation on the volume percentage of particles codeposited was studied. The volume percentage of graphite codeposited was found to increase with concentration in solution and playing rate. An increase in particle size and agitation reduced the volume percentage codeposited. The hardness of nickel-graphite deposits was found to decrease with graphite content in the as-deposited and heat treated condition. The frictional and wear properties of electroless nickel-graphite were studied and compared to those of electroless nickel-PTFE. The self-lubricating nature of both coatings was found to be dependent on the ratio of coated area to uncoated area, the size and content of lubricating material in the deposit, and the load between contacting surfaces. The mechanism of self-lubrication was considered, concluding that graphite only produced an initial lubricating surface due to the orientation of flakes, unlike PTFE, which produced true self-lubrication throughout the coating life. Heat treatment of electroless nickel chromium deposits at 850oC for 8 and 16 hours produced nickel-iron-chromium alloy deposits with a phosphorus rich surface of high hardness. Coefficients of friction and wear rates were intially moderate for the phosphorus rich layer but increased for the nickel-iron-chromium region of the coating.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Smart structure sensors based on embedded fibre Bragg grating (FBG) arrays in aluminium alloy matrix by ultrasonic consolidation (UC) technique have been proposed and demonstrated successfully. The temperature, loading and bending responses of the embedded FBG arrays have been systematically characterized. The embedded FBGs exhibit an average temperature sensitivity of ~36 pm °C-1, which is three times higher than that of normal FBGs, a bending sensitivity of 0.73 nm/m-1 and a loading responsivity of ~0.1 nm kg-1 within the dynamic range from 0 kg to 3 kg. These initial experimental results clearly demonstrate that the UC produced metal matrix structures can be embedded with FBG sensor arrays to become smart structures with capabilities to monitor the structure operation and health conditions in applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two zinc-based alloys of high aluminium content, Super Cosmal alloy containing 60% Al, 6% Si, 1% Cu, 0.3% Mn and HAZCA alloy containing 60% Al, 8% Si, 2% Cu, 0.06% Mg were produced by sand casting. Foundry characteristics in particular, fluidity, mode of solidification and feeding ability were examined. Metallographic analysis of structures was carried out using optical and scanning electron microscopy and their mechanical properties were determined using standard techniques. Dry wear characteristics were determined using a pin-on-disc test, and boundary-lubricated wear was studied using full bearing tests. Results from casting experiments were evaluated and compared with the behaviour of a standard ZA-27 alloy and those from tribological tests with both ZA-27 alloy and a leaded tin-bronze (SAE660) under the same testing conditions. The presence of silicon was beneficial, reducing the temperature range of solidification, improving feeding efficiency and reducing gravity segregation of phases. Use of chills and melt degassing was found necessary to achieve soundness and enhanced mechanical properties. Dry wear tests were performed against a steel counterface for sliding speeds of 0.25, 0.5, 1.0 and 2 m/s and for a range of loads up to 15 kgf. The high aluminium alloys showed wear rates as low as those of ZA-27 at speeds of 0.25 and 0.5 m/s for the whole range of applied loads. ZA-27 performed better at higher speeds. The build up of a surface film on the wearing surface of the test pins was found to be responsible for the mild type of wear of the zinc based alloys. The constitution of the surface film was determined as a complex mixture of aluminium, zinc and iron oxides and metallic elements derived from both sliding materials. For full bearing tests, bushes were machined from sand cast bars and were tested against a steel shaft in the presence of a light spindle oil as the lubricant. Results showed that all zinc based alloys run-in more rapidly than bronze, and that wear in Super Cosmal and HAZCA alloys after prolonged running were similar to those in ZA-27 bearings and significantly smaller than those of the bronze.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

myo-Inositol phosphates possessing the 1,2,3-trisphosphate motif share the remarkable ability to completely inhibit iron-catalysed hydroxyl radical formation. The simplest derivative, myo-inositol 1,2,3-trisphosphate [Ins(1,2,3)P3], has been proposed as an intracellular iron chelator involved in iron transport. The binding conformation of Ins(1,2,3)P3 is considered to be important to complex Fe3+ in a 'safe' manner. Here, a pyrene-based fluorescent probe, 4,6-bispyrenoyl-myo-inositol 1,2,3,5-tetrakisphosphate [4,6-bispyrenoyl Ins(1,2,3,5)P4], has been synthesised and used to monitor the conformation of the 1,2,3-trisphosphate motif using excimer fluorescence emission. Ring-flip of the cyclohexane chair to the penta-axial conformation occurs upon association with Fe3+, evident from excimer fluorescence induced by π-π stacking of the pyrene reporter groups, accompanied by excimer formation by excitation at 351 nm. This effect is unique amongst biologically relevant metal cations, except for Ca 2+ cations exceeding a 1:1 molar ratio. In addition, the thermodynamic constants for the interaction of the fluorescent probe with Fe3+ have been determined. The complexes formed between Fe 3+ and 4,6-bispyrenoyl Ins(1,2,3,5)P4 display similar stability to those formed with Ins(1,2,3)P3, indicating that the fluorescent probe acts as a good model for the 1,2,3-trisphosphate motif. This is further supported by the antioxidant properties of 4,6-bispyrenoyl Ins(1,2,3,5)P4, which closely resemble those obtained for Ins(1,2,3)P3. The data presented confirms that Fe3+ binds tightly to the unstable penta-axial conformation of myo-inositol phosphates possessing the 1,2,3-trisphosphate motif. © 2010 The Royal Society of Chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes an experimental and analytic study of the effects of magnetic non-linearity and finite length on the loss and field distribution in solid iron due to a travelling mmf wave. In the first half of the thesis, a two-dimensional solution is developed which accounts for the effects of both magnetic non-linearity and eddy-current reaction; this solution is extended, in the second half, to a three-dimensional model. In the two-dimensional solution, new equations for loss and flux/pole are given; these equations contain the primary excitation, the machine parameters and factors describing the shape of the normal B-H curve. The solution applies to machines of any air-gap length. The conditions for maximum loss are defined, and generalised torque/frequency curves are obtained. A relationship between the peripheral component of magnetic field on the surface of the iron and the primary excitation is given. The effects of magnetic non-linearity and finite length are combined analytically by introducing an equivalent constant permeability into a linear three-dimensional analysis. The equivalent constant permeability is defined from the non-linear solution for the two-dimensional magnetic field at the axial centre of the machine to avoid iterative solutions. In the linear three-dimensional analysis, the primary excitation in the passive end-regions of the machine is set equal to zero and the secondary end faces are developed onto the air-gap surface. The analyses, and the assumptions on which they are based, were verified on an experimental machine which consists of a three-phase rotor and alternative solid iron stators, one with copper end rings, and one without copper end rings j the main dimensions of the two stators are identical. Measurements of torque, flux /pole, surface current density and radial power flow were obtained for both stators over a range of frequencies and excitations. Comparison of the measurements on the two stators enabled the individual effects of finite length and saturation to be identified, and the definition of constant equivalent permeability to be verified. The penetration of the peripheral flux into the stator with copper end rings was measured and compared with theoretical penetration curves. Agreement between measured and theoretical results was generally good.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oxidation behaviour of porous, sintered iron was studied by thermo-gravimetric analysis (TGA), at temperatures between 300oC and 700oC, in a flowing atmosphere of 20% O2/80% N2. Samples for TGA tests were compacted from pure iron powder, at 150MPa to 550MPa, and vacuum sintered at 1120oC. The mass gain of samples during oxidation was recorded continuously for a period of 24 hours. It was found that the oxidation mass gain of PM samples depended on the permeability of the pore structure and the temperature. At low temperatures, the oxidising gas was able to permeate through the pore structure, causing the oxidation of a large active surface area. At high temperatures the active surface area was smaller, because oxygen diffusing into the pore structure, from the external atmosphere, was adsorbed by pore surfaces close to the external surface of the compact. Although the weight of the external oxide scale on compacts increased with increasing oxidation temperature, the absence of oxide in the core porosity in compacts oxidised at higher temperatures resulted in smaller mass gains than were observed for compacts oxidised at lower temperatures. The heat generated by the oxidation of the large active surface areas of porous samples was studied by thermo-calorimetric analysis (TCA). It was determined that this phenomenon could raise the core temperature of samples significantly above the ambient furnace temperature, and affecting the morphology of the oxide scale formed. The effects (on oxidation behaviour at 500oC) of small, elemental alloy additions of Al, Cu, P and Si to pure iron powder were studied. It was found that elements that promote pore rounding during sintering caused a significant reduction in the mass gain rate of the PM alloys, compared to the PM pure iron. The oxidation resistance due to these elements prevented pore closure by oxide growth, so that the active surface area of these PM alloys remained high. The PM alloys were also studied by thermo-mechanical analysis (TMA, dilatometry), to determine their dimensional stability during sintering and subsequent elevated temperature service. The oxidation experiment was augmented with optical and electron microscopy, and X-ray analysis of alloy and scale compositions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the increase use of de-icing salts on roads for safety, the need for improved corrosion resistance of the traditional galvanized automobile bodies has never been greater. In the present work, Zn alloy coatings (Zn-Ni and Zn-Co) were studied as an alternative to pure Zn coatings. The production of these deposits involved formulation of various acidic (pH of about 5.5) chloride based solutions. These showed anomalous deposition, that is, alloys were deposited much more easily than expected from the noble behaviour of Ni and Co metals. Coating compositions ranging from 0 to about 37% Ni and 20% Co were obtained. The chemical composition of the coatings depended very much on the electrolytes nature and operating conditions. The Ni content of deposits increased with increase in Ni bath concentration, temperature, pH and solution agitation but decreased considerably with increase in current density. The throwing power of the Zn-Ni solution deteriorated as Ni metal bath concentration increased. The Co content of deposits also increased with increase in Co bath concentration and temperature, and decreased with increase in current density. However, the addition of commercial organic additives to Zn-Co plating solutions suppressed considerably the amount of Co in the coatings. The Co content of deposits plated from Zincrolyte solution was found to be more sensitive to variation in current density than in the case of deposits plated from the alkaline Canning solution. The chromating procedures were carried out using laboratory formulated solution and commercially available ones. The deposit surface state was of great significance in influencing the formulation of conversion coatings. Bright and smooth deposits acquired an iridescent colour when treated with the laboratory formulated solution. However, the dull deposits acquired a brownish appearance. The correlation between the electrochemical test results and the neutral salt spray in marine environment was good. Non-chromated Zn-Ni coatings containing about 11-14% Ni increased in corrosion resistance compared to pure Zn. Non-chromated Zn-Co deposits of composition 4-8% were required to show a significant improvement in corrosion resistance Corrosion resistance was improved considerably by conversion coating. However, the type of conversion coating was very important. Samples treated in a laboratory solution performed badly compared to those treated in commercial solutions. Zn alloy coatings were superior to pure Zn, the Schloetter sample (13.8% Ni) had the lowest corrosion rate, followed by the Canning sample (1.0% Co) and then Zincrolyte (0.3% Co).Neither the chromium content of the conversion films nor the chromium state was found to have an effect on corrosion performance of the coatings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The creep behaviour of three pressure diecast commercial zinc-aluminium based alloys: Mazak 3, corresponding to BS 1004A, and the new alloys ZA.8 and ZA.27 with a series of alloys with compositions ranging from 0% to 30% aluminium was investigated. The total creep elongation of commercial alloys was shown to be well correlated using an empirical equation. Based on this a parametrical relationship was derived which allowed the total creep extension to be related to the applied stress, the temperature and the time of test, so that a quantitative assessment of creep of the alloys could be made under different conditions. Deviation from the normal creep kinetics occurred in alloys ZA.8 and ZA.27 at very low stresses, 150°C, due to structural coarsening combined with partial transformation of ε -phase into T' phase. The extent of primary creep was found to increase with aluminium content, but secondary creep rates decreased in the order Mazak 3, ZA.8 and ZA.27. Thus, based on the above equation, ZA.8 was found to have a substantially better total creep resistance than ZA.27, which in turn was marginally better than Mazak 3 for strains higher than 0.5%, but inferior for smaller strains, due to its higher primary creep extension. The superior creep resistance of ZA.8 was found to be due to the presence of strictly-orientated, thin plate-like precipitates of ε(CuZn4) phase in the zinc matrix of the eutectic and the lamellarly decomposed β phase, in which the precipitation morphology and orientation of ε in the zinc matrix was determined. Over broad ranges of temperature and stresses, the stress exponents and activation energies for creep were found to be consistent with some proposed creep rate mechanisms; i.e. viscous glide for Mazak 3, dislocation climb over second phase particles for ZA.8 and dislocation climb for ZA.27, controlled by diffusion in the zinc-rich phase. The morphology of aluminium and copper-rich precipitates formed from the solid solution of zinc was clearly revealed. The former were found to further increase the creep rate of inherently low creep resistant zinc, but the latter contributed significantly to the creep resistance. Excess copper in the composition, however, was not beneficial in improving the creep resistance. Decomposition of β in copper-containing alloys was found to be through a metastable Zn-Al phase which is strongly stabilised by copper, and the final products of the decomposition had a profound effect on the creep strength of the alloys. The poor creep resistance of alloy ZA.27 was due to the presence of particulate products derived from decomposed β-phase and a large volume of fine, equiaxed products of continuously decomposed α-dendrites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fatigue behaviour of the cold chamber pressure-die-cast alloys: Mazak3, ZA8, ZA27, M3K, ZA8K, ZA27K, K1, K2 and K3 was investigated at temperature of 20°C. The alloys M3K, ZA8K and ZA27K were also examined at temperatures of 50 and 100°C. The ratio between fatigue strength and tensile strength was established at 20°C at 107 cycles. The fatigue life prediction of the alloys M3K, ZA8K and ZA27K was formulated at 20, 50 and 100°C. The prediction formulae were found to be reasonably accurate. All of the experimental alloys were heterogeneous and contained large but varying amounts of pores. These pores were a major contribution and dominated the alloys fatigue failure. Their effect, however, on tensile failure was negligible. The ZA27K possessed the highest tensile strength but the lowest fatigue strength. The relationship between the fracture topography and the microstructure was also determined by the use of a mixed signal of a secondary electron and a back-scattered electron on the SEM. The tensile strength of the experimental alloys was directly proportional to the aluminium content within the alloys. The effect of copper content was also investigated within the alloys K1, K2, ZA8K and K3 which contained 0%, 0.5%, 1.0% and 2.0% respectively. It was determined that the fatigue and tensile strengths improved with higher copper contents. Upon ageing the alloys Mazak3, ZA8 and ZA27 at an ambient temperature for 5 years, copper was also found to influence and maintain the metastable Zn-Al (αm) phase. The copper free Mazak3 upon ageing lost this metastable phase. The 1.0% copper ZA8 alloy had lost almost 50% of its metastable phase. Finally the 2.0% copper ZA27 had merely lost 10% of its metastable phase. The cph zinc contained a limited number of slip systems, therefore twinning deformation was unavoidable in both fatigue and tensile testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microbial demand for iron is often met by the elaboration of siderophores into the surrounding medium and expression of cognate outer membrane receptors for the ferric siderophore complexes. Conditions of iron limitation, such as those encountered in vivo, cause Pseudomonas aeruginosa to express two high-affinity iron-uptake systems based on pyoverdin and pyochelin. These systems will operate both in the organism's natural habitat, soil and water, where the solubility of iron at neutral pH is extremely low, and in the human host where the availability of free iron is too low to sustain bacterial growth due to the iron-binding glycoproteins transferrin and lactoferrin. Cross-feeding and radiolabelled iron uptake experiments demonstrated that pyoverdin biosynthesis and uptake were highly heterogeneous amongst P.aeruginosa strains, that growth either in the presence of pyoverdin or pyochelin resulted in induction of specific IROMPs, and that induction of iron uptake is siderophore-specific. The P.aeruginosa Tn5 mutant PH1 is deficient in ferripyoverdin uptake and resistant to pyocin Sa, suggesting that the site of interaction of pyocin Sa is a ferripyoverdin receptor. Additional Tn5 mutants appeared to exploit different strategies to achieve pyocin Sa-resistance, involving modifications in expression of pyoverdin-mediated iron uptake, indicating that complex regulatory systems exist to enable these organisms to compete effectively for iron. Modulation of expression of IROMPs prompted a study of the mechanism of uptake of a semi-synthetic C(7) α-formamido substituted cephalosporin BRL 41897A. Sensitivity to this agent correlated with expression of the 75 kDa ferri-pyochelin receptor and demonstrated the potential of high-affinity iron uptake systems for targeting of novel antibiotics. Studies with ferri-pyoverdin uptake-deficient mutant PH1 indicated that expression of outer membrane protein G (OprG), which is usually expressed under iron-rich conditions and repressed under iron-deficient conditions, was perturbed. Attempts were made to clone the oprG gene using a degenerate probe based on the N-terminal amino acid sequence. A strongly hybridising HindIll restriction fragment was cloned and sequenced, but failed to reveal an open reading frame correspondmg to OprG. However, there appears to be good evidence that a part of the gene codmg for the hydrophilic membrane-associated ATP-binding component of a hitherto uncharacterised periplasmic- binding-protein-dependent transport system has been isolated. The full organisation and sequence of the operon, and substrate for this putative transport system, are yet: to be elucidated,

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new family of commercial zinc alloys designated as ZA8, ZA12, and ZA27 and high damping capacity alloys including Cosmal and Supercosmal and aluminium alloy LM25 were investigated for compressive creep and load relaxation behaviour under a series of temperatures and stresses. A compressive creep machine was designed to test the sand cast hollow cylindrical test specimens of these alloys. For each compressive creep experiment the variation of creep strain was presented in the form of graphs plotted as percentage of creep strain () versus time in seconds (s). In all cases, the curves showed the same general form of the creep curve, i.e. a primary creep stage, followed by a linear steady-state region (secondary creep). In general, it was observed that alloy ZA8 had the least primary creep among the commercial zinc-based alloys and ZA27 the greatest. The extent of primary creep increased with aluminium content to that of ZA27 then declined to Supercosmal. The overall creep strength of ZA27 was generally less than ZA8 and ZA12 but it showed better creep strength than ZA8 and ZA12 at high temperature and high stress. In high damping capacity alloys, Supercosmal had less primary creep and longer secondary creep regions and also had the lowest minimum creep rate among all the tested alloys. LM25 exhibited almost no creep at maximum temperature and stress used in this research work. Total creep elongation was shown to be well correlated using an empirical equation. Stress exponent and activation energies were calculated and found to be consistent with the creep mechanism of dislocation climb. The primary α and β phases in the as-cast structures decomposed to lamellar phases on cooling, with some particulates at dendrite edges and grain boundaries. Further breakdown into particulate bodies occurred during creep testing, and zinc bands developed at the highest test temperature of 160°C. The results of load relaxation testing showed that initially load loss proceeded rapidly and then deminished gradually with time. Load loss increased with temperature and almost all the curves approximated to a logarithmic decay of preload with time. ZA alloys exhibited almost the same load loss at lower temperature, but at 120°C ZA27 improved its relative performance with the passage of time. High damping capacity alloys and LM25 had much better resistance to load loss than ZA alloys and LM25 was found to be the best against load loss among these alloys. A preliminary equation was derived to correlate the retained load with time and temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This investigation has been concerned with the behaviour of solid internal lubricant during mixing, compaction, ejection, dewaxing and sintering of iron powder compacts. Zinc stearate (0.01%-4.0%) was added to irregular iron powder by admixing or precipitation from solution. Pressure/density relationships, determined by continuous compaction, and loose packed densities were used to show that small additions of zinc stearate reduced interparticle friction during loose packing and at low compaction pressures. Large additions decreased particle/die-wall friction during compaction and ejection but also caused compaction inhibition. Transverse rupture strengths were determined on compacts containing various stearate based lubricants and it was found that green strength was reduced by the interposition of a thin lubricant layer within inter~particle contacts. Only materials much finer than the iron powder respectively) were able to form such layers. Investigations were undertaken to determine the effect of the decomposition of these lubricants on the development of mechanical properties in dewaxed or sintered compacts. Physical and chemical influences on tensile strength were observed. Decomposition of lubricants was associated with reductions of strength caused by the physical effects of pressure increases and removal of lubricant from interparticle contacts. There were also chemical effects associated with the influence of gaseous decomposition products and solid residues on sintering mechanisms. Thermogravimetry was used to study the decomposition behaviour of various lubricants as free compounds and within compacts. The influence of process variables such as atmosphere type, flow-rate and compact density were investigated. In a reducing atmosphere the decomposition of these lubricants was characterised by two stages. The first involved the rapid decomposition of the hydrocarbon radical. The second, higher temperature, reactions depended on lubricant type and involved solid residues. The removal of lubricant could also markedly affect dimensional change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The damping behaviour of the cold chamber pressure-die-casting alloy: M3, ZA8, ZA27, ZM11, Cosmal, Supercosmal and newly developed ZA27H1 and ZA27H2 was investigated at room temperature and elevated temperatures of up to 90 degrees C. The damping properties of the alloys were established at all temperatures. Formulas were established to predict damping properties of each alloy at any given temperature. The prediction formulae were found to be very accurate. All of the experimental alloys were heterogenous with varying microstructure and grain size; this was the major contribution and dominated the damping properties of the alloys. Super cosmal and ZA27 possessed the highest tensile strength but ZA27H1, ZA27H2 and ZM11 showed the highest damping properties. The relationship between microstructure and damping capacity of all alloys was also examined using back-scattered electron on the SEM. Further more detailed examinations of the microstructures of alloys ZM11, Cosmal and Supercosmal were carried out on the transmission electron microscope in order to establish the phases present in all alloys. These helped to obtain the mechanism of damping in the experimental alloys. The main damping mechanism in most of the experimental alloys was due to grain-boundary-sliding. Micro structural examinations also revealed the absence of -phase in the Cosmal and Supercosmal. This was thought to be due to a change in solid solubility of the alloys, which could have been caused by the addition of Si.