2 resultados para ionic resistance

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metakaolin (MK), a calcined clay, was included as a partial cement replacement material, at up to 20% by weight of binder, in cement pastes and concrete, and its influence on the resistance to chloride ingress investigated. Reductions in effective chloride diffusion coefficients through hardened cement paste were obtained for binary blends and by combining OPC, MK and a second cement replacement material of pulverised fuel ash or ground granulated blast furnace slag. Steady state oxygen diffusion measurements through hardened cement pastes measured using an electrochemical cell showed that the interaction between charged species and the pore surfaces is a major factor in determining chloride diffusion rate. Rheology of the binder, particularly at high MK replacement levels, was found to have a dramatic influence on the diffusion performance of cement pastes. It was concluded that plasticising admixtures are essential for adequate dispersion of MK in cement pastes. Chloride concentration profile analysis of the concrete cylinders, exposed to sodium chloride solution for one year, was employed to obtain apparent chloride diffusion coefficients for concrete specimens. MK was found to reduce the depth of chloride penetration into concrete when compared with that of unblended mixes. Corrosion rate and corrosion potential measurements were taken on steel bars embedded in concrete exposed to a saline environment under conditions of cyclic wetting and drying. The initiation time for corrosion was found to be significantly longer for MK blended mixes than for plain OPC systems. The aggregate-paste interfacial zone of MK blended systems was investigated by steady state diffusion of chloride ions through mortar containing glass beads as model aggregate. For the model aggregate specimens tested the work confirmed the hypothesis that properties of the bulk paste are the controlling factors in ionic diffusion through mortar.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interactions between proteins and gold colloids functionalized with protein-resistant oligo(ethylene glycol) (OEG) thiol, HS(CH(2))(11) (OCH(2)CH(2))(6)OMe (EG(6)OMe), in aqueous solution have been studied by small-angle X-ray scattering (SAXS) and UV-vis spectroscopy. The mean size, 2R, and the size distribution of the decorated gold colloids have been characterized by SAXS. The monolayer-protected gold colloids have no correlations due to the low volume fraction in solution and are stable in a wide range of temperatures (5-70 degrees C, pH (1.3-12.4), and ionic strength (0-1.0 M). In contrast, protein (bovine serum albumin) solutions with concentrations in the range of 60-200 mg/mL (4.6-14.5 vol show a pronounced correlation peak in SAXS, which results from the repulsive electrostatic interaction between charged proteins. These protein interactions show significant dependence on ionic strength, as would be expected for an electrostatic interaction (Zhang et al. J. Phys. Chem. B 2007, 111, 251). For a mixture of proteins and gold colloids, the protein-protein interaction changes little upon mixing with OEG-decorated gold colloids. In contrast, the colloid-colloid interaction is found to be strongly dependent on the protein concentration and the size of the colloid itself. Adding protein to a colloidal solution results in an attractive depletion interaction between functionalized gold colloids, and above a critical protein concentration, c*, the colloids form aggregates and flocculate. Adding salt to such mixtures enhances the depletion effect and decreases the critical protein concentration. The aggregation is a reversible process (i.e., diluting the solution leads to dissolution of aggregates). The results also indicate that the charge of the OEG self-assembled monolayer at a curved interface has a rather limited effect on the colloidal stabilization and the repulsive interaction with proteins.