7 resultados para ionic interactions

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrogels may be described as cross-linked hydrophilic polymers that swell but do not dissolve in water. The production of high water content hydrogels was the subject of investigation. Based upon copolymer compositions that had already achieved commercial success as biomaterials, new monomers were added or substituted in and the effects observed. The addition of N-isopropyl acrylamide to an acrylamide-based composition that had previously been designed to become a contact lens, produced materials that showed smart effects in that the water content showed dependence on the temperature of the hydrating solution. Such thermo-responsive materials have potential uses in drug delivery, ultrafiltration and cell culture surfaces. Proteoglycans in nature have an important role to play in structural support where a highly hydrophilic structure maintains lubricious surfaces. Certain functional groups that impart this hydrophilicity are present in certain sulphonate monomers, Bis(3-sulphopropyl ester) itaconate, dipotassium salt (SPI), 3-Sulphopropyl ester acrylate, potassium salt (SPA) and Sodium 2-(acrylamido)-2-methyl propane sulphonate (NaAMPS). These monomers were incorporated into a HEMA-based copolymer that had been designed initially as a contact lens and the resulting effects examined. Highly hydrophilic materials resulted that showed reduced protein deposition over the neutral core material. It is postulated that a sulphonate group would have a larger number of hydration shells around it than for example methacrylic acid, leading to more dynamic exchange and so reducing the adsorption of biological solutes. A cationic monomer was added to bring back the net anionic nature of the sulphonate hydrogels and the effects studied. Ionic interactions were found to cause a reduction in the water content of the resulting materials as the mobility of the network decreased, leading to stiffer but less extensible materials. The presence of a net dominant charge, whether negative or positive, appeared to act to reduce protein deposition, but increasing equivalence in the amount of both charges served to present a more 'neutral' surface and deposition subsequently increased. The grafting of hydrophilic hydrogel layers onto silicone elastomer was attempted and the results evaluated using dynamic contact angle measurements. Following plasma oxidation to reduce the surface energy barrier to aqueous grafting chemistry, it was found that the wettability of the modified elastomers could be significantly enhanced by such treatment. The SPA-grafted material in particular hinted at an osmotic drive for rehydration that may be exploited in biomaterials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ribozymes are short strands of RNA that possess a huge potential as biological tools for studying gene expression and as therapeutic agents to down-regulate undesirable gene expression. Successful application of ribozymes requires delivery to the target site in sufficient amounts for an adequate duration. However, due to their large size and polyanionic character ribozymes are not amenable to transport across biological membranes. In this study a chemically modified ribozyme with enhanced biological stability, targeted against the EGFR mRNA has been evaluated for cellular delivery to cultured glial and neuronal cells with a view to developing treatments for brain tumours. Cellular delivery of free ribozyme was characterised in cultured glial and neuronal cells from the human and rat. Delivery was very limited and time dependent with no consistent difference observed between glial and neuronal cells in both species. Cellular association was largely temperature and energy-dependent with a small component of non-energy dependent association. Further studies showed that ribozyme cellular association was inhibited with self and cross competition with nucleic and non-nucleic acid polyanions indicating the presence of cell surface ribozyme-binding molecules. Trypsin washing experiments further implied that the ribozyme binding surface molecules were protein by nature. Dependence of cellular association on pH indicated that interaction of ribozyme with cell surface molecules was based on ionic interactions. Fluoresence studies indicated that, post cell association, ribozymes were sequestered in sub-cellular vesicles. South-Western blots identified several cell surface proteins which bind to ribozymes and could facilitate cellular association. The limited cellular association observed with free ribozyme required the development and evaluation of polylactide-co-glycolide microspheres incorporating ribozyme for enhanced cellular delivery. Characterisation of microsphere mediated delivery of ribozyme in cultured glial and neuronal cells showed that association increased by 18 to 27-fold in all cell types with no differences observed between cell lines and species. Microsphere mediated delivery was temperature and energy dependent and independent of pH. In order to assess the potential of PLGA micro spheres for the CNS delivery of ribozyme the distribution of ribozyme entrapping microspheres was investigated in rat CNS after intracerebroventricular injection. Distribution studies demonstrated that after 24 hours there was no free ribozyme present in the brain parenchyma, however microsphere entrapped ribozyme was found in the CNS. Microspheres remained in the ventricular system after deposition and passed from the lateral ventricles to the third and fourth ventricle and in the subarachnoid space. Investigation of the influence of microsphere size on the distribution in CNS demonstrated that particles up to 2.5 and O.5f.lm remained in the ventricles around the choroid plexus and ependymal lining.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The influence of ionic strength and of the chemical nature of cations on the protein-protein interactions in ovalbumin solution was studied using small-angle X-ray and neutron scattering (SAXS/SANS). The globular protein ovalbumin is found in dimeric form in solutions as suggested by SANS/SAXS experiments. Due to the negative charge of the proteins at neutral pH, the protein-protein interactions without any salt addition are dominated by electrostatic repulsion. A structure factor related to screened Coulombic interactions together with an ellipsoid form factor was used to fit the scattering intensity. A monovalent salt (NaCl) and a trivalent salt (YCl3) were used to study the effect of the chemical nature of cations on the interaction in protein solutions. Upon addition of NaCl, with ionic strength below that of physiological conditions (150 mM), the effective interactions are still dominated by the surface charge of the proteins and the scattering data can be understood using the same model. When yttrium chloride was used, a reentrant condensation behavior, i.e., aggregation and subsequent redissolution of proteins with increasing salt concentration, was observed. SAXS measurements reveal a transition from effective repulsion to attraction with increasing salt concentration. The solutions in the reentrant regime become unstable after long times (several days). The results are discussed and compared with those from bovine serum albumin (BSA) in solutions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have studied a series of samples of bovine serum albumin (BSA) solutions with protein concentration, c, ranging from 2 to 500 mg/mL and ionic strength, I, from 0 to 2 M by small-angle X-ray scattering (SAXS). The scattering intensity distribution was compared to simulations using an oblate ellipsoid form factor with radii of 17 x 42 x 42 A, combined with either a screened Coulomb, repulsive structure factor, S-SC(q), or an attractive square-well structure factor, S-SW(q). At pH = 7, BSA is negatively charged. At low ionic strength, I <0.3 M, the total interaction exhibits a decrease of the repulsive interaction when compared to the salt-free solution, as the net surface charge is screened, and the data can be fitted by assuming an ellipsoid form factor and screened Coulomb interaction. At moderate ionic strength (0.3-0.5 M), the interaction is rather weak, and a hard-sphere structure factor has been used to simulate the data with a higher volume fraction. Upon further increase of the ionic strength (I >= 1.0 M), the overall interaction potential was dominated by an additional attractive potential, and the data could be successfully fitted by an ellipsoid form factor and a square-well potential model. The fit parameters, well depth and well width, indicate that the attractive potential caused by a high salt concentration is weak and long-ranged. Although the long-range, attractive potential dominated the protein interaction, no gelation or precipitation was observed in any of the samples. This is explained by the increase of a short-range, repulsive interaction between protein molecules by forming a hydration layer with increasing salt concentration. The competition between long-range, attractive and short-range, repulsive interactions accounted for the stability of concentrated BSA solution at high ionic strength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An efficient means of evaluating potential biomaterials is to use the in vitro fibroblast cell culture model. However, the chemistry which influences cell adhesion on polymer substrates is poorly understood. The work in this thesis aims to rationalise several theories of current opinion and introduce new chemical techniques that may predict cellular behaviour. The keratoprosthesis is a typical example of the need to be able to manipulate cell adhesion of materials since both adhesive and non adhesive sections are needed for proper integration and optical function. Calcein AM/ethidium homodimer-1 and DAPI assays were carried out using 3T3 and EKl.BR cells. Poly(HEMA) was found to be the most cell adhesive hydrogel tested. The reactivity of monomers and the resulting sequence distribution were found to affect surface properties and this may explain the poor levels of cell adhesion seen on NVP/MMA copolymers. Surface free energy is shown to be dependent on the polar and non polar groups present along the backbone chain of the polymers. Dehydrated and hydrated contact angle measurements show the effect of rotation of surface groups around the backbone chain. This effect is most apparent on hydrogels containing methacrylic acid. Dynamic contact angle measurements confirm sequence distribution irregularities and demonstrate the mobility of surface groups. Incorporation of NVI or DEAEMA into the hydrogels does not affect the mobility of the surface groups despite their bulkiness. Foetal calf serum was used for the first time as a test solution in an attempt to mimic a biological environment during surface experiments. A Vroman effect may be present, and may involve different surface proteins for each material tested. This interdisciplinary study combines surface characterisation and biological testing to further the knowledge of the biomaterial/host interface. Surface chemistry techniques appear to be insufficiently sensitive to predict cellular behaviour. The degree of ionisation of hydrogels containing ionic groups depends on the nature of the functional groups as well as the concentration and this is an important parameter to consider when comparing charged materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work described in this thesis is an attempt to provide improved understanding of the effects of several factors affecting diffusion in hydrated cement pastes and to aid the prediction of ionic diffusion processes in cement-based materials. Effect of pore structure on diffusion was examined by means of comparative diffusion studies of quaternary ammonium ions with different ionic radii. Diffusivities of these ions in hydrated pastes of ordinary portland cement with or without addition of fly ash were determined by a quasi-steady state technique. The restriction of the pore geometry on diffusion was evaluated from the change of diffusivity in response to the change of ionic radius. The pastes were prepared at three water-cement ratios, 0.35, 0.50 and 0.65. Attempts were made to study the effect of surface charge or the electrochemical double layer at the pore/solution interface on ionic diffusion. An approach was to evaluate the zeta potentials of hydrated cement pastes through streaming potential measurements. Another approach was the comparative studies of the diffusion kinetics of chloride and dissolved oxygen in hydrated pastes of ordinary portland cement with addition of 0 and 20% fly ash. An electrochemical technique for the determination of oxygen diffusivity was also developed. Non-steady state diffusion of sodium potassium, chloride and hydroxyl ions in hydrated ordinary portland cement paste of water-cement ratio 0.5 was studied with the aid of computer-modelling. The kinetics of both diffusion and ionic binding were considered for the characterization of the concentration profiles by Fick's first and second laws. The effect of the electrostatic interactions between ions on the overall diffusion rates was also considered. A general model concerning the prediction of ionic diffusion processes in cement-based materials has been proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this research was to investigate the molecular interactions occurring in the formulation of non-ionic surfactant based vesicles composed monopalmitoyl glycerol (MPG), cholesterol (Chol) and dicetyl phosphate (DCP). In the formulation of these vesicles, the thermodynamic attributes and surfactant interactions based on molecular dynamics, Langmuir monolayer studies, differential scanning calorimetry (DSC), hot stage microscopy and thermogravimetric analysis (TGA) were investigated. Initially the melting points of the components individually, and combined at a 5:4:1 MPG:Chol:DCP weight ratio, were investigated; the results show that lower (90 C) than previously reported (120-140 C) temperatures could be adopted to produce molten surfactants for the production of niosomes. This was advantageous for surfactant stability; whilst TGA studies show that the individual components were stable to above 200 C, the 5:4:1 MPG:Chol:DCP mixture show ∼2% surfactant degradation at 140 C, compared to 0.01% was measured at 90 C. Niosomes formed at this lower temperature offered comparable characteristics to vesicles prepared using higher temperatures commonly reported in literature. In the formation of niosome vesicles, cholesterol also played a key role. Langmuir monolayer studies demonstrated that intercalation of cholesterol in the monolayer did not occur in the MPG:Chol:DCP (5:4:1 weight ratio) mixture. This suggests cholesterol may support bilayer assembly, with molecular simulation studies also demonstrating that vesicles cannot be built without the addition of cholesterol, with higher concentrations of cholesterol (5:4:1 vs 5:2:1, MPG:Chol:DCP) decreasing the time required for niosome assembly. © 2013 Elsevier B.V.