3 resultados para ion beam epitaxy

em Aston University Research Archive


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect of low energy nitrogen molecular ion beam bombardment on metals and compound semiconductors has been studied, with the aim to investigate at the effects of ion and target properties. For this purpose, nitrogen ion implantation in aluminium, iron, copper, gold, GaAs and AIGaAs is studied using XPS and Angle Resolve XPS. A series of experimental studies on N+2 bombardment induced compositional changes, especially the amount of nitrogen retained in the target, were accomplished. Both monoenergetic implantation and non-monoenergetic ion implantation were investigated, using the VG Scientific ESCALAB 200D system and a d. c. plasma cell, respectively. When the samples, with the exception of gold, are exposed to air, native oxide layers are formed on the surfaces. In the case of monoenergetic implantation, the surfaces were cleaned using Ar+ beam bombardment prior to implantation. The materials were then bombarded with N2+ beam and eight sets of successful experiments were performed on each sample, using a rastered N2+ ion beam of energy of 2, 3, 4 and 5 keV with current densities of 1 μA/cm2 and 5 μA/cm22 for each energy. The bombarded samples were examined by ARXPS. After each complete implantation, XPS depth profiles were created using Ar+ beam at energy 2 ke V and current density 2 μA/cm2 . As the current density was chosen as one of the parameters, accurate determination of current density was very important. In the case of glow discharge, two sets of successful experiments were performed in each case, by exposing the samples to nitrogen plasma for the two conditions: at low pressure and high voltage and high pressure and low voltage. These samples were then examined by ARXPS. On the theoretical side, the major problem was prediction of the number of ions of an element that can be implanted in a given matrix. Although the programme is essentially on experimental study, but an attempt is being made to understand the current theoretical models, such as SATVAL, SUSPRE and TRIM. The experimental results were compared with theoretical predictions, in order to gain a better understanding of the mechanisms responsible. From the experimental results, considering possible experimental uncertainties, there is no evidence of significant variation in nitrogen saturation concentration with ion energy or ion current density in the range of 2-5 ke V, however, the retention characteristics of implantant seem to strongly depend on the chemical reactivity between ion species and target material. The experimental data suggests the presence of at least one thermal process. The discrepancy between the theoretical and experimental results could be the inability of the codes to account for molecular ion impact and thermal processes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present work describes the development of a proton induced X-ray emission (PIXE) analysis system, especially designed and builtfor routine quantitative multi-elemental analysis of a large number of samples. The historical and general developments of the analytical technique and the physical processes involved are discussed. The philosophy, design, constructional details and evaluation of a versatile vacuum chamber, an automatic multi-sample changer, an on-demand beam pulsing system and ion beam current monitoring facility are described.The system calibration using thin standard foils of Si, P, S,Cl, K, Ca, Ti, V, Fe, Cu, Ga, Ge, Rb, Y and Mo was undertaken at proton beam energies of 1 to 3 MeV in steps of 0.5 MeV energy and compared with theoretical calculations. An independent calibration check using bovine liver Standard Reference Material was performed.  The minimum detectable limits have been experimentally determined at detector positions of 90° and 135° with respect to the incident beam for the above range of proton energies as a function of atomic number Z. The system has detection limits of typically 10- 7 to 10- 9 g for elements 14ions of areal density of thin foils using Rutherford backscattering data.  Amniotic fluid samples supplied by South Sefton Health Authority were successfully analysed for their low base line elemental concentrations. In conclusion the findings of this work are discussed with suggestions for further work .

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Surface compositional change of GaP, GaAs, GaSb, InP, InAs, InSb, GeSi and CdSe single crystals due to low keV noble gas ion beam bombardment has been investigated by combining X-ray Photoelectron Spectroscopy (XPS) and Low Energy Ion Scattering Spectroscopy (LEISS). The purpose of using this complementary analytical method is to obtain more complete experimental evidence of ion beam modification in surfaces of compound semiconductors and GeSi alloy to improve the understanding of the mechanisms responsible for these effects. Before ion bombardment the sample surfaces were analysed nondestructively by Angular Resolved XPS (ARXPS) and LEISS to get the initial distribution of surface composition. Ion bombardment experiments were carried out using 3keV argon ions with beam current of 1μA for a period of 50 minutes, compositional changes in the surfaces of compound semiconductors and GeSi alloy were monitored with normal XPS. After ion bombardment the surfaces were re-examined with ARXPS and LEISS. Both XPS and LEISS results showed clearly that ion bombardment will change the compositional distribution in the compound semiconductor and GeSi surfaces. In order to explain the observed experimental results, two major theories in this field, Sigmund linear collision cascade theory and the thermodynamic models based on bombardment induced Gibbsian surface segregation and diffusion, were investigated. Computer simulation using TRIM code was also carried out for assistance to the theoretical analysis. Combined the results obtained from XPS and LEISS analyses, ion bombardment induced compositional changes in compound semiconductor and GeSi surfaces are explained in terms of the bombardment induced Gibbsian surface segregation and diffusion.