14 resultados para intestine parasite

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation of rat jejunal and distal colonic electrolyte transport in-vitro was undertaken using an Ussing chamber prepartion. Selective α2-adrenoceptor stimualtion in the jejunum was found to depress theo-phylline elevated anion secretion, as evidenced by decreases in short- circuit current (SCC). or α1 -Adrenoceptor stimulation, after α2 -adrenoceptor antagonism in the jejunum, evoked transient increases in basal anion secretion, as reflected by transient increases in basal SCC. The use of the neurotoxin tetrodotoxin indicated that this was a direct epithelial secretory effect. 5-hydroxytryptamine (5-HT) on the jejunum elicited transient increases in basal anion secretion, as demonstrated by transient increases in basal SCC. The use of tetrodotoxin, reserpine and α1 -adrenoceptor antagonists, indicated that a major component of this epithelial secretory effect by 5-HT, was associated with activation of intramural nervous pathways of the sympathetic nervous system, ultimately stimulating α1-adrenoceptors. This might represent an important secretory mechanism by 5-HT in the jejunum. β2-Adrenoceptor stimulation in the distal colon was found to decrease basal SCC, as evidenced by the metoprolol resistant effect of the selective β2- adrenoceptor agonist salbutamol, and lack of effect of the selective β1-adrenoceptor agonist prenalterol. An investigation of rat distal colonic fluid and electrolyte transport in-vivo was undertaken using an colonic loop technique. Although a basal colonic absorption of Na+ and Cl-, and a secretion of K+ were observed, these processes were not under tonic α-adrenergic regulation, as evidenced by the lack of effect of selective α-adrenoceptor antagonism. The secretory effects of prostaglandin-E2 were inhibited by α-adrenoceptor activation, whereas such stimulation did not evoke pro-absorptive responses upon basal transport, unlike noradrenaline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational genome analysis enables systematic identification of potential immunogenic proteins within a pathogen. Immunogenicity is a system property that arises through the interaction of host and pathogen as mediated through the medium of a immunogenic protein. The overt dissimilarity of pathogenic proteins when compared to the host proteome is conjectured by some to be the determining principal of immunogenicity. Previously, we explored this idea in the context of Bacterial, Viral, and Fungal antigen. In this paper, we broaden and extend our analysis to include complex antigens of eukaryotic origin, arising from tumours and from parasite pathogens. For both types of antigen, known antigenic and non-antigenic protein sequences were compared to human and mouse proteomes. In contrast to our previous results, both visual inspection and statistical evaluation indicate a much wider range of homologues and a significant level of discrimination; but, as before, we could not determine a viable threshold capable of properly separating non-antigen from antigen. In concert with our previous work, we conclude that global proteome dissimilarity is not a useful metric for immunogenicity for presently available antigens arising from Bacteria, viruses, fungi, parasites, and tumours. While we see some signal for certain antigen types, using dissimilarity is not a useful approach to identifying antigenic molecules within pathogen genomes.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inorganic phosphate is an essential mineral for both prokaryotic and eukaryotic cell metabolism and structure. Its uptake into the cell is mediated by membrane bound transporters and coupled to Na+ transport. Mammalian sodium-dependent Pi co-transporters have been grouped into three families NaPi-I, NaPi-II, and NaPi-III. Despite being discovered more than 2 decades ago, very little is known about requirements for NaPi-III transporters in vivo, in the context of intact animal models. Here we find that impaired function of the C. elegans NaPi-III transporter, pitr-1, results in decreased brood size and dramatically increased expression of vitellogenin by the worm intestine. Unexpectedly, we found that the effects of pitr-1 mutation on vitellogenin expression in the intestine could only be rescued by expression of pitr-1 in the germline, and not by expression of pitr-1 in the intestine itself. Our results indicate the existence of a signal from the germline that regulates gene expression in the intestine, perhaps linking nutrient export from the intestine to production of gametes by the germline.