12 resultados para interaction genotype-environment
em Aston University Research Archive
Resumo:
Using current software engineering technology, the robustness required for safety critical software is not assurable. However, different approaches are possible which can help to assure software robustness to some extent. For achieving high reliability software, methods should be adopted which avoid introducing faults (fault avoidance); then testing should be carried out to identify any faults which persist (error removal). Finally, techniques should be used which allow any undetected faults to be tolerated (fault tolerance). The verification of correctness in system design specification and performance analysis of the model, are the basic issues in concurrent systems. In this context, modeling distributed concurrent software is one of the most important activities in the software life cycle, and communication analysis is a primary consideration to achieve reliability and safety. By and large fault avoidance requires human analysis which is error prone; by reducing human involvement in the tedious aspect of modelling and analysis of the software it is hoped that fewer faults will persist into its implementation in the real-time environment. The Occam language supports concurrent programming and is a language where interprocess interaction takes place by communications. This may lead to deadlock due to communication failure. Proper systematic methods must be adopted in the design of concurrent software for distributed computing systems if the communication structure is to be free of pathologies, such as deadlock. The objective of this thesis is to provide a design environment which ensures that processes are free from deadlock. A software tool was designed and used to facilitate the production of fault-tolerant software for distributed concurrent systems. Where Occam is used as a design language then state space methods, such as Petri-nets, can be used in analysis and simulation to determine the dynamic behaviour of the software, and to identify structures which may be prone to deadlock so that they may be eliminated from the design before the program is ever run. This design software tool consists of two parts. One takes an input program and translates it into a mathematical model (Petri-net), which is used for modeling and analysis of the concurrent software. The second part is the Petri-net simulator that takes the translated program as its input and starts simulation to generate the reachability tree. The tree identifies `deadlock potential' which the user can explore further. Finally, the software tool has been applied to a number of Occam programs. Two examples were taken to show how the tool works in the early design phase for fault prevention before the program is ever run.
Resumo:
The design and synthesis of biomaterials covers a growing number of biomedical applications. The use of biomaterials in biological environment is associated with a number of problems, the most important of which is biocompatabUity. If the implanted biomaterial is not compatible with the environment, it will be rejected by the biological site. This may be manifested in many ways depending on the environment in which it is used. Adsorption of proteins takes place almost instantaneously when a biomaterial comes into contact with most biological fluids. The eye is a unique body site for the study of protein interactions with biomaterials, because of its ease of access and deceptive complexity of the tears. The use of contact lenses for either vision correction and cosmetic reasons or as a route for the controlled drug delivery, has significantly increased in recent years. It is relatively easy to introduce a contact lens Into the tear fluid and remove after a few minutes without surgery or trauma to the patient. A range of analytical techniques were used and developed to measure the proteins absorbed to some existing commercial contact lens materials and also to novel hydrogels synthesised within the research group. Analysis of the identity and quantity of proteins absorbed to biomaterials revealed the importance of many factors on the absorption process. The effect of biomaterial structure, protein nature in terms of size. shape and charge and pH of the environment on the absorption process were examined in order to determine the relative up-take of tear proteins. This study showed that both lysozyme and lactoferrin penetrate the lens matrix of ionic materials. Measurement of the mobility and activity of the protein deposited into the surface and within the matrix of ionic lens materials demonstrated that the mobility is pH dependent and, within the experimental errors, the biological activity of lysozyme remained unchanged after adsorption and desorption. The study on the effect of different monomers copolymerised with hydroxyethyl methacrylate (HEMA) on the protein up-take showed that monomers producing a positive charge on the copolymer can reduce the spoilation with lysozyme. The studies were extended to real cases in order to compare the patient dependent factors. The in-vivo studies showed that the spoilation is patient dependent as well as other factors. Studies on the extrinsic factors such as dye used in colour lenses showed that the addition of colourant affects protein absorption and, in one case, its effect is beneficial to the wearer as it reduces the quantity of the protein absorbed.
Resumo:
As more consumers shop online, it becomes crucial for marketers to know how online shopping environments (OSEs) can be used to gain competitive advantage. This dissertation aims to explain theoretically how OSE attributes work together holistically to produce desirable consumer responses, applying and extending a theory from the environmental psychology literature to the online context. Firstly, the study conceptualises OSEs as virtual environments which may be perceived and experienced both cognitively and affectively through a technology-mediated interaction with a computer screen. A multi-disciplinary approach identifies key characteristics of OSEs: they involve consumers; they are more complex than their offline counterparts; they are likely first apprehended holistically; and they can elicit high levels of emotions and cognition. Secondly, the research uses a gestalt approach and extends Kaplan and Kalan’s (1982) Preference Framework, taking account of the specific characteristics of OSEs, which one visits specifically to obtain product information. The results support the proposition that OSEs are perceived in terms of their Sense-making and Exploratory attributes. Thirdly, the research explains how OSE attributes work together to produce desirable consumer responses. As hypothesised, Exploratory potential produces both Hedonic and Utilitarian value, and both kinds of value contribute to Site commitment. An unexpected result is that Sense-making potential does not produce Utilitarian value directly, but only through the mediation of Exploratory potential. The research contributes to marketing theory by: (1) identifying ways the internet has changed the nature of the shopping experience; (2) extending Kaplan and Kaplan’s Preference Framework to explain how consumers perceive OSEs holistically; (3) identifying the distinction between page-level and site-level perceptions, and (4) distinguishing between different sources of information (marketer vs. non-marketer). Managerially, the research provides a model for marketers to conceive and design retail websites whose attributes work together to create competitive advantage.
Resumo:
A prominent theme emerging in Occupational Health and Safety (OSH) is the development of management systems. A range of interventions, according to a prescribed route detailed by one of the management systems, can be introduced into an organisation with some expectation of improved OSH performance. This thesis attempts to identify the key influencing factors that may impact upon the process of introducing interventions, (according to B88800: 1996, Guide to Implementing Occupational Health and Safety Management Systems) into an organisation. To help identify these influencing factors a review of possible models from the sphere of Total Quality Management (TQM) was undertaken and the most suitable TQM model selected for development and use in aSH. By anchoring the aSH model's development in the reviewed literature a range ofeare, medium and low level influencing factors were identified. This model was developed in conjunction with the research data generated within the case study organisation (rubber manufacturer) and applied to the organisation. The key finding was that the implementation of an OSH intervention was dependant upon three broad vectors of influence. These are the Incentive to introduce change within an organisation which refers to the drivers or motivators for OSH. Secondly the Ability within the management team to actually implement the changes refers to aspects, amongst others, such as leadership, commitment and perceptions of OSH. Ability is in turn itself influenced by the environment within which change is being introduced. TItis aspect of Receptivity refers to the history of the plant and characteristics of the workforce. Aspects within Receptivity include workforce profile and organisational policies amongst others. It was found that the TQM model selected and developed for an OSH management system intervention did explain the core influencing factors and their impact upon OSH performance. It was found that within the organisation the results that may have been expected from implementation of BS8800:1996 were not realised. The OSH model highlighted that given the organisation's starting point, a poor appreciation of the human factors of OSH, gave little reward for implementation of an OSH management system. In addition it was found that general organisational culture can effectively suffocate any attempts to generate a proactive safety culture.
Resumo:
The research concerns the development and application of an analytical computer program, SAFE-ROC, that models material behaviour and structural behaviour of a slender reinforced concrete column that is part of an overall structure and is subjected to elevated temperatures as a result of exposure to fire. The analysis approach used in SAFE-RCC is non-linear. Computer calculations are used that take account of restraint and continuity, and the interaction of the column with the surrounding structure during the fire. Within a given time step an iterative approach is used to find a deformed shape for the column which results in equilibrium between the forces associated with the external loads and internal stresses and degradation. Non-linear geometric effects are taken into account by updating the geometry of the structure during deformation. The structural response program SAFE-ROC includes a total strain model which takes account of the compatibility of strain due to temperature and loading. The total strain model represents a constitutive law that governs the material behaviour for concrete and steel. The material behaviour models employed for concrete and steel take account of the dimensional changes caused by the temperature differentials and changes in the material mechanical properties with changes in temperature. Non-linear stress-strain laws are used that take account of loading to a strain greater than that corresponding to the peak stress of the concrete stress-strain relation, and model the inelastic deformation associated with unloading of the steel stress-strain relation. The cross section temperatures caused by the fire environment are obtained by a preceding non-linear thermal analysis, a computer program FIRES-T.
Resumo:
Teacher-fronted interaction is generally seen to place limitations on the contributions that learners can make to classroom discourse and the conclusion is that learners are unable to experiment with, for example, turn-taking mechanisms. This article looks at teacher-fronted interaction in the language classroom from the perspective of learner talk by examining how learners might take the initiative during this apparently more rigid form of interaction. Detailed microanalysis of classroom episodes, using a conversation analysis institutional discourse approach, shows how learners orient to the institutional context to make sophisticated and effective use of turn-taking mechanisms to take the initiative and direct the interaction, even in the controlled environment of teacher-fronted talk. The article describes some of the functions of such learner initiative, examines how learners and teachers co-construct interaction and how learners can create learning opportunities for themselves. It also briefly looks at teacher reactions to such initiative. The article concludes that learner initiative in teacher-fronted interaction may constitute a significant opportunity for learning and that teachers should find ways of encouraging such interaction patterns.
Resumo:
This article characterizes key weaknesses in the ability of current digital libraries to support scholarly inquiry, and as a way to address these, proposes computational services grounded in semiformal models of the naturalistic argumentation commonly found in research literatures. It is argued that a design priority is to balance formal expressiveness with usability, making it critical to coevolve the modeling scheme with appropriate user interfaces for argument construction and analysis. We specify the requirements for an argument modeling scheme for use by untrained researchers and describe the resulting ontology, contrasting it with other domain modeling and semantic web approaches, before discussing passive and intelligent user interfaces designed to support analysts in the construction, navigation, and analysis of scholarly argument structures in a Web-based environment. © 2007 Wiley Periodicals, Inc. Int J Int Syst 22: 17–47, 2007.
Resumo:
Over the past two years there have been several large-scale disasters (Haitian earthquake, Australian floods, UK riots, and the Japanese earthquake) that have seen wide use of social media for disaster response, often in innovative ways. This paper provides an analysis of the ways in which social media has been used in public-to-public communication and public-to-government organisation communication. It discusses four ways in which disaster response has been changed by social media: 1. Social media appears to be displacing the traditional media as a means of communication with the public during a crisis. In particular social media influences the way traditional media communication is received and distributed. 2. We propose that user-generated content may provide a new source of information for emergency management agencies during a disaster, but there is uncertainty with regards to the reliability and usefulness of this information. 3. There are also indications that social media provides a means for the public to self-organise in ways that were not previously possible. However, the type and usefulness of self-organisation sometimes works against efforts to mitigate the outcome of the disaster. 4. Social media seems to influence information flow during a disaster. In the past most information flowed in a single direction from government organisation to public, but social media negates this model. The public can diffuse information with ease, but also expect interaction with Government Organisations rather than a simple one-way information flow. These changes have implications for the way government organisations communicate with the public during a disaster. The predominant model for explaining this form of communication, the Crisis and Emergency Risk Communication (CERC), was developed in 2005 before social media achieved widespread popularity. We will present a modified form of the CERC model that integrates social media into the disaster communication cycle, and addresses the ways in which social media has changed communication between the public and government organisations during disasters.
Resumo:
Over the past two years there have been several large-scale disasters (Haitian earthquake, Australian floods, UK riots, and the Japanese earthquake) that have seen wide use of social media for disaster response, often in innovative ways. This paper provides an analysis of the ways in which social media has been used in public-to-public communication and public-to-government organisation communication. It discusses four ways in which disaster response has been changed by social media: 1. Social media appears to be displacing the traditional media as a means of communication with the public during a crisis. In particular social media influences the way traditional media communication is received and distributed. 2. We propose that user-generated content may provide a new source of information for emergency management agencies during a disaster, but there is uncertainty with regards to the reliability and usefulness of this information. 3. There are also indications that social media provides a means for the public to self-organise in ways that were not previously possible. However, the type and usefulness of self-organisation sometimes works against efforts to mitigate the outcome of the disaster. 4. Social media seems to influence information flow during a disaster. In the past most information flowed in a single direction from government organisation to public, but social media negates this model. The public can diffuse information with ease, but also expect interaction with Government Organisations rather than a simple one-way information flow. These changes have implications for the way government organisations communicate with the public during a disaster. The predominant model for explaining this form of communication, the Crisis and Emergency Risk Communication (CERC), was developed in 2005 before social media achieved widespread popularity. We will present a modified form of the CERC model that integrates social media into the disaster communication cycle, and addresses the ways in which social media has changed communication between the public and government organisations during disasters.
Resumo:
Mobile and wearable computers present input/output prob-lems due to limited screen space and interaction techniques. When mobile, users typically focus their visual attention on navigating their environment - making visually demanding interface designs hard to operate. This paper presents two multimodal interaction techniques designed to overcome these problems and allow truly mobile, 'eyes-free' device use. The first is a 3D audio radial pie menu that uses head gestures for selecting items. An evaluation of a range of different audio designs showed that egocentric sounds re-duced task completion time, perceived annoyance, and al-lowed users to walk closer to their preferred walking speed. The second is a sonically enhanced 2D gesture recognition system for use on a belt-mounted PDA. An evaluation of the system with and without audio feedback showed users' ges-tures were more accurate when dynamically guided by au-dio-feedback. These novel interaction techniques demon-strate effective alternatives to visual-centric interface de-signs on mobile devices.
Resumo:
This paper estimates the importance of (tariff-mediated) network effects and the impact of a consumer's social network on her choice of mobile phone provider. The study uses network data obtained from surveys of students in several European and Asian countries. We use the Quadratic Assignment Procedure, a non-parametric permutation test, to adjust for the particular error structure of network data. We find that respondents strongly coordinate their choice of mobile phone providers, but only if their provider induces network effects. This suggests that this coordination depends on network effects rather than on information contagion or pressure to conform to the social environment.
Resumo:
We study a Luttinger liquid (LL) coupled to a generic environment consisting of bosonic modes with arbitrary density-density and current-current interactions. The LL can be either in the conducting phase and perturbed by a weak scatterer or in the insulating phase and perturbed by a weak link. The environment modes can also be scattered by the imperfection in the system with arbitrary transmission and reflection amplitudes. We present a general method of calculating correlation functions under the presence of the environment and prove the duality of exponents describing the scaling of the weak scatterer and of the weak link. This duality holds true for a broad class of models and is sensitive to neither interaction nor environmental modes details, thus it shows up as the universal property. It ensures that the environment cannot generate new stable fixed points of the renormalization group flow. Thus, the LL always flows toward either conducting or insulating phase. Phases are separated by a sharp boundary which is shifted by the influence of the environment. Our results are relevant, for example, for low-energy transport in (i) an interacting quantum wire or a carbon nanotube where the electrons are coupled to the acoustic phonons scattered by the lattice defect; (ii) a mixture of interacting fermionic and bosonic cold atoms where the bosonic modes are scattered due to an abrupt local change of the interaction; (iii) mesoscopic electric circuits.