4 resultados para intensive therapy unit
em Aston University Research Archive
Resumo:
The appraisal and relative performance evaluation of nurses are very important and beneficial for both nurses and employers in an era of clinical governance, increased accountability and high standards of health care services. They enhance and consolidate the knowledge and practical skills of nurses by identification of training and career development plans as well as improvement in health care quality services, increase in job satisfaction and use of cost-effective resources. In this paper, a data envelopment analysis (DEA) model is proposed for the appraisal and relative performance evaluation of nurses. The model is validated on thirty-two nurses working at an Intensive Care Unit (ICU) at one of the most recognized hospitals in Lebanon. The DEA was able to classify nurses into efficient and inefficient ones. The set of efficient nurses was used to establish an internal best practice benchmark to project career development plans for improving the performance of other inefficient nurses. The DEA result confirmed the ranking of some nurses and highlighted injustice in other cases that were produced by the currently practiced appraisal system. Further, the DEA model is shown to be an effective talent management and motivational tool as it can provide clear managerial plans related to promoting, training and development activities from the perspective of nurses, hence increasing their satisfaction, motivation and acceptance of appraisal results. Due to such features, the model is currently being considered for implementation at ICU. Finally, the ratio of the number DEA units to the number of input/output measures is revisited with new suggested values on its upper and lower limits depending on the type of DEA models and the desired number of efficient units from a managerial perspective.
Resumo:
The Intensive Care Unit (ICU) being one of those vital areas of a hospital providing clinical care, the quality of service rendered must be monitored and measured quantitatively. It is, therefore, essential to know the performance of an ICU, in order to identify any deficits and enable the service providers to improve the quality of service. Although there have been many attempts to do this with the help of illness severity scoring systems, the relative lack of success using these methods has led to the search for a form of measurement, which would encompass all the different aspects of an ICU in a holistic manner. The Analytic Hierarchy Process (AHP), a multiple-attribute, decision-making technique is utilised in this study to evolve a system to measure the performance of ICU services reliably. This tool has been applied to a surgical ICU in Barbados; we recommend AHP as a valuable tool to quantify the performance of an ICU. Copyright © 2004 Inderscience Enterprises Ltd.
Resumo:
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT • Little is known about the pharmacokinetics of potassium canrenoate/canrenone in paediatric patients WHAT THIS STUDY ADDS • A population pharmacokinetic model has been developed to evaluate the pharmacokinetics of canrenone in paediatric patients who received potassium canrenoate as part of their therapy in the intensive care unit. AIMS To characterize the population pharmacokinetics of canrenone following administration of potassium canrenoate to paediatric patients. METHODS Data were collected prospectively from 23 paediatric patients (2 days to 10 years of age; median weight 4 kg, range 2.16–28.0 kg) who received intravenous potassium canrenoate (K-canrenoate) as part of their intensive care therapy for removal of retained fluids, e.g. in pulmonary oedema due to chronic lung disease and for the management of congestive heart failure. Plasma samples were analyzed by HPLC for determination of canrenone (the major metabolite and pharmacologically active moiety) and the data subjected to pharmacokinetic analysis using NONMEM. RESULTS A one compartment model best described the data. The only significant covariate was weight (WT). The final population models for canrenone clearance (CL/F) and volume of distribution (V/F) were CL/F (l h−1) = 11.4 × (WT/70.0)0.75 and V/F (l) = 374.2 × (WT/70) where WT is in kg. The values of CL/F and V/F in a 4 kg child would be 1.33 l h−1 and 21.4 l, respectively, resulting in an elimination half-life of 11.2 h. CONCLUSIONS The range of estimated CL/F in the study population was 0.67–7.38 l h−1. The data suggest that adjustment of K-canrenoate dosage according to body weight is appropriate in paediatric patients.
Resumo:
Purpose – The purpose of this paper is to develop a comprehensive framework for improving intensive care unit performance. Design/methodology/approach – The study introduces a quality management framework by combining cause and effect diagram and logical framework. An intensive care unit was identified for the study on the basis of its performance. The reasons for not achieving the desired performance were identified using a cause and effect diagram with the stakeholder involvement. A logical framework was developed using information from the cause and effect diagram and a detailed project plan was developed. The improvement projects were implemented and evaluated. Findings – Stakeholders identified various intensive care unit issues. Managerial performance, organizational processes and insufficient staff were considered major issues. A logical framework was developed to plan an improvement project to resolve issues raised by clinicians and patients. Improved infrastructure, state-of-the-art equipment, well maintained facilities, IT-based communication, motivated doctors, nurses and support staff, improved patient care and improved drug availability were considered the main project outputs for improving performance. The proposed framework is currently being used as a continuous quality improvement tool, providing a planning, implementing, monitoring and evaluating framework for the quality improvement measures on a sustainable basis. Practical implications – The combined cause and effect diagram and logical framework analysis is a novel and effective approach to improving intensive care performance. Similar approaches could be adopted in any intensive care unit. Originality/value – The paper focuses on a uniform model that can be applied to most intensive care units.