5 resultados para information units

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sensory cells usually transmit information to afferent neurons via chemical synapses, in which the level of noise is dependent on an applied stimulus. Taking into account such dependence, we model a sensory system as an array of LIF neurons with a common signal. We show that information transmission is enhanced by a nonzero level of noise. Moreover, we demonstrate a phenomenon similar to suprathreshold stochastic resonance with additive noise. We remark that many properties of information transmission found for the LIF neurons was predicted by us before with simple binary units [Phys. Rev. E 75, 021121 (2007)]. This confirmation of our predictions allows us to point out identical roots of the phenomena found in the simple threshold systems and more complex LIF neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we consider the optimisation of Shannon mutual information (MI) in the context of two model neural systems The first is a stochastic pooling network (population) of McCulloch-Pitts (MP) type neurons (logical threshold units) subject to stochastic forcing; the second is (in a rate coding paradigm) a population of neurons that each displays Poisson statistics (the so called 'Poisson neuron'). The mutual information is optimised as a function of a parameter that characterises the 'noise level'-in the MP array this parameter is the standard deviation of the noise, in the population of Poisson neurons it is the window length used to determine the spike count. In both systems we find that the emergent neural architecture and; hence, code that maximises the MI is strongly influenced by the noise level. Low noise levels leads to a heterogeneous distribution of neural parameters (diversity), whereas, medium to high noise levels result in the clustering of neural parameters into distinct groups that can be interpreted as subpopulations In both cases the number of subpopulations increases with a decrease in noise level. Our results suggest that subpopulations are a generic feature of an information optimal neural population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The need for an adequate information system for the Highways Departments in the United Kingdom has been recognised by the report of a committee presented to the Minister of Transport in 1970, (The Marshall Report). This research aims to present a comprehensive information system on a sound theoretical basis which should enable the different levels of management to execute their work adequately. The suggested system presented in this research covers the different functions of the Highways Department, and presents a suggested solution for problems which may occur during the planning and controlling of work in the different locations of the Highways Department. The information system consists of:- 1. A coding system covering the cost units, cost centres and cost elements. 2. Cost accounting records for the cost units and cost centres. 3. A budgeting and budgetary control system covering, the different planning methods and procedures which are required for preparing the capital expenditure budget, the improvement and maintenance operation flexible budgets and programme of work, the plant budget, the administration budget, and the purchasing budget. 4. A reporting system which ensures that the different levels of management are receiving relevant and timely information. 5. The flow of documents which covers the relationship between the prime documents, the cost accounting records, budgets, reports and their relation to the different sections and offices within the department. A comprehensive cost units, cost centres, and cost elements codes together with a number of examples demonstrating the results of the survey, and examples of the application and procedures of the suggested information system have been illustrated separately as appendices. The emphasis is on the information required for internal control by management personnel within the County Council.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data Envelopment Analysis (DEA) is recognized as a modern approach to the assessment of performance of a set of homogeneous Decision Making Units (DMUs) that use similar sources to produce similar outputs. While DEA commonly is used with precise data, recently several approaches are introduced for evaluating DMUs with uncertain data. In the existing approaches many information on uncertainties are lost. For example in the defuzzification, the a-level and fuzzy ranking approaches are not considered. In the tolerance approach the inequality or equality signs are fuzzified but the fuzzy coefficients (inputs and outputs) are not treated directly. The purpose of this paper is to develop a new model to evaluate DMUs under uncertainty using Fuzzy DEA and to include a-level to the model under fuzzy environment. An example is given to illustrate this method in details.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated information transmission in an array of threshold units that have signal-dependent noise and a common input signal. We demonstrate a phenomenon similar to stochastic resonance and suprathreshold stochastic resonance with additive noise and show that information transmission can be enhanced by a nonzero level of noise. By comparing system performance to one with additive noise we also demonstrate that the information transmission of weak signals is significantly better with signal-dependent noise. Indeed, information rates are not compromised even for arbitrary small input signals. Furthermore, by an appropriate selection of parameters, we observe that the information can be made to be (almost) independent of the level of the noise, thus providing a robust method of transmitting information in the presence of noise. These result could imply that the ability of hair cells to code and transmit sensory information in biological sensory systems is not limited by the level of signal-dependent noise. © 2007 The American Physical Society.