39 resultados para information grounds theory

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the design and results of a task-based user study, based on Information Foraging Theory, on a novel user interaction framework - uInteract - for content-based image retrieval (CBIR). The framework includes a four-factor user interaction model and an interactive interface. The user study involves three focused evaluations, 12 simulated real life search tasks with different complexity levels, 12 comparative systems and 50 subjects. Information Foraging Theory is applied to the user study design and the quantitative data analysis. The systematic findings have not only shown how effective and easy to use the uInteract framework is, but also illustrate the value of Information Foraging Theory for interpreting user interaction with CBIR. © 2011 Springer-Verlag Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper proposes an ISE (Information goal, Search strategy, Evaluation threshold) user classification model based on Information Foraging Theory for understanding user interaction with content-based image retrieval (CBIR). The proposed model is verified by a multiple linear regression analysis based on 50 users' interaction features collected from a task-based user study of interactive CBIR systems. To our best knowledge, this is the first principled user classification model in CBIR verified by a formal and systematic qualitative analysis of extensive user interaction data. Copyright 2010 ACM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concept evaluation at the early phase of product development plays a crucial role in new product development. It determines the direction of the subsequent design activities. However, the evaluation information at this stage mainly comes from experts' judgments, which is subjective and imprecise. How to manage the subjectivity to reduce the evaluation bias is a big challenge in design concept evaluation. This paper proposes a comprehensive evaluation method which combines information entropy theory and rough number. Rough number is first presented to aggregate individual judgments and priorities and to manipulate the vagueness under a group decision-making environment. A rough number based information entropy method is proposed to determine the relative weights of evaluation criteria. The composite performance values based on rough number are then calculated to rank the candidate design concepts. The results from a practical case study on the concept evaluation of an industrial robot design show that the integrated evaluation model can effectively strengthen the objectivity across the decision-making processes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In order to run a successful business, today’s manager needs to combine business skills with an understanding of information systems and the opportunities and benefits that they bring to an organisation. Starting from basic concepts, this book provides a comprehensive and accessible guide to: •understanding the technology of business information systems; •choosing the right information system for an organisation; •developing and managing an efficient business information system; •employing information systems strategically to achieve organisational goals. Taking a problem-solving approach, Business Information Systems looks at information systems theory within the context of the most recent business and technological advances. This thoroughly revised new edition has updated and expanded coverage of contemporary key topics such as: •Web 2.0 •enterprise systems •implementation and design of IS strategy •outsourcing

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to bridge the “Semantic gap”, a number of relevance feedback (RF) mechanisms have been applied to content-based image retrieval (CBIR). However current RF techniques in most existing CBIR systems still lack satisfactory user interaction although some work has been done to improve the interaction as well as the search accuracy. In this paper, we propose a four-factor user interaction model and investigate its effects on CBIR by an empirical evaluation. Whilst the model was developed for our research purposes, we believe the model could be adapted to any content-based search system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Risk and knowledge are two concepts and components of business management which have so far been studied almost independently. This is especially true where risk management is conceived mainly in financial terms, as, for example, in the banking sector. The banking sector has sophisticated methodologies for managing risk, such as mathematical risk modeling. However. the methodologies for analyzing risk do not explicitly include knowledge management for risk knowledge creation and risk knowledge transfer. Banks are affected by internal and external changes with the consequent accommodation to new business models new regulations and the competition of big players around the world. Thus, banks have different levels of risk appetite and policies in risk management. This paper takes into consideration that business models are changing and that management is looking across the organization to identify the influence of strategic planning, information systems theory, risk management and knowledge management. These disciplines can handle the risks affecting banking that arise from different areas, but only if they work together. This creates a need to view them in an integrated way. This article sees enterprise risk management as a specific application of knowledge in order to control deviation from strategic objectives, shareholders' values and stakeholders' relationships. Before and after a modeling process it necessary to find insights into how the application of knowledge management processes can improve the understanding of risk and the implementation of enterprise risk management. The article presents a propose methodology to contribute to providing a guide for developing risk modeling knowledge and a reduction of knowledge silos, in order to improve the quality and quantity of solutions related to risk inquiries across the organization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Heterogeneous and incomplete datasets are common in many real-world visualisation applications. The probabilistic nature of the Generative Topographic Mapping (GTM), which was originally developed for complete continuous data, can be extended to model heterogeneous (i.e. containing both continuous and discrete values) and missing data. This paper describes and assesses the resulting model on both synthetic and real-world heterogeneous data with missing values.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It has been suggested that, in order to maintain its relevance, critical research must develop a strong emphasis on empirical work rather than the conceptual emphasis that has typically characterized critical scholarship in management. A critical project of this nature is applicable in the information systems (IS) arena, which has a growing tradition of qualitative inquiry. Despite its relativist ontology, actor–network theory places a strong emphasis on empirical inquiry and this paper argues that actor–network theory, with its careful tracing and recording of heterogeneous networks, is well suited to the generation of detailed and contextual empirical knowledge about IS. The intention in this paper is to explore the relevance of IS research informed by actor–network theory in the pursuit of a broader critical research project as de? ned in earlier work.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Over recent years, evidence has been accumulating in favour of the importance of long-term information as a variable which can affect the success of short-term recall. Lexicality, word frequency, imagery and meaning have all been shown to augment short term recall performance. Two competing theories as to the causes of this long-term memory influence are outlined and tested in this thesis. The first approach is the order-encoding account, which ascribes the effect to the usage of resources at encoding, hypothesising that word lists which require less effort to process will benefit from increased levels of order encoding, in turn enhancing recall success. The alternative view, trace redintegration theory, suggests that order is automatically encoded phonologically, and that long-term information can only influence the interpretation of the resultant memory trace. The free recall experiments reported here attempted to determine the importance of order encoding as a facilitatory framework and to determine the locus of the effects of long-term information in free recall. Experiments 1 and 2 examined the effects of word frequency and semantic categorisation over a filled delay, and experiments 3 and 4 did the same for immediate recall. Free recall was improved by both long-term factors tested. Order information was not used over a short filled delay, but was evident in immediate recall. Furthermore, it was found that both long-term factors increased the amount of order information retained. Experiment 5 induced an order encoding effect over a filled delay, leaving a picture of short-term processes which are closely associated with long-term processes, and which fit conceptions of short-term memory being part of language processes rather better than either the encoding or the retrieval-based models. Experiments 6 and 7 aimed to determine to what extent phonological processes were responsible for the pattern of results observed. Articulatory suppression affected the encoding of order information where speech rate had no direct influence, suggesting that it is ease of lexical access which is the most important factor in the influence of long-term memory on immediate recall tasks. The evidence presented in this thesis does not offer complete support for either the retrieval-based account or the order encoding account of long-term influence. Instead, the evidence sits best with models that are based upon language-processing. The path urged for future research is to find ways in which this diffuse model can be better specified, and which can take account of the versatility of the human brain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present information-theory analysis of the tradeoff between bit-error rate improvement and the data-rate loss using skewed channel coding to suppress pattern-dependent errors in digital communications. Without loss of generality, we apply developed general theory to the particular example of a high-speed fiber communication system with a strong patterning effect. © 2007 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we summarize our recently proposed work on the information theory analysis of regenerative channels. We discuss how the design and the transfer function properties of the regenerator affect the noise statistics and enable Shannon capacities higher than that of the corresponding linear channels (in the absence of regeneration).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neural networks can be regarded as statistical models, and can be analysed in a Bayesian framework. Generalisation is measured by the performance on independent test data drawn from the same distribution as the training data. Such performance can be quantified by the posterior average of the information divergence between the true and the model distributions. Averaging over the Bayesian posterior guarantees internal coherence; Using information divergence guarantees invariance with respect to representation. The theory generalises the least mean squares theory for linear Gaussian models to general problems of statistical estimation. The main results are: (1)~the ideal optimal estimate is always given by average over the posterior; (2)~the optimal estimate within a computational model is given by the projection of the ideal estimate to the model. This incidentally shows some currently popular methods dealing with hyperpriors are in general unnecessary and misleading. The extension of information divergence to positive normalisable measures reveals a remarkable relation between the dlt dual affine geometry of statistical manifolds and the geometry of the dual pair of Banach spaces Ld and Ldd. It therefore offers conceptual simplification to information geometry. The general conclusion on the issue of evaluating neural network learning rules and other statistical inference methods is that such evaluations are only meaningful under three assumptions: The prior P(p), describing the environment of all the problems; the divergence Dd, specifying the requirement of the task; and the model Q, specifying available computing resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neural networks are statistical models and learning rules are estimators. In this paper a theory for measuring generalisation is developed by combining Bayesian decision theory with information geometry. The performance of an estimator is measured by the information divergence between the true distribution and the estimate, averaged over the Bayesian posterior. This unifies the majority of error measures currently in use. The optimal estimators also reveal some intricate interrelationships among information geometry, Banach spaces and sufficient statistics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major problem in modern probabilistic modeling is the huge computational complexity involved in typical calculations with multivariate probability distributions when the number of random variables is large. Because exact computations are infeasible in such cases and Monte Carlo sampling techniques may reach their limits, there is a need for methods that allow for efficient approximate computations. One of the simplest approximations is based on the mean field method, which has a long history in statistical physics. The method is widely used, particularly in the growing field of graphical models. Researchers from disciplines such as statistical physics, computer science, and mathematical statistics are studying ways to improve this and related methods and are exploring novel application areas. Leading approaches include the variational approach, which goes beyond factorizable distributions to achieve systematic improvements; the TAP (Thouless-Anderson-Palmer) approach, which incorporates correlations by including effective reaction terms in the mean field theory; and the more general methods of graphical models. Bringing together ideas and techniques from these diverse disciplines, this book covers the theoretical foundations of advanced mean field methods, explores the relation between the different approaches, examines the quality of the approximation obtained, and demonstrates their application to various areas of probabilistic modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An unsupervised learning procedure based on maximizing the mutual information between the outputs of two networks receiving different but statistically dependent inputs is analyzed (Becker S. and Hinton G., Nature, 355 (1992) 161). By exploiting a formal analogy to supervised learning in parity machines, the theory of zero-temperature Gibbs learning for the unsupervised procedure is presented for the case that the networks are perceptrons and for the case of fully connected committees.