7 resultados para information geometry

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural networks are statistical models and learning rules are estimators. In this paper a theory for measuring generalisation is developed by combining Bayesian decision theory with information geometry. The performance of an estimator is measured by the information divergence between the true distribution and the estimate, averaged over the Bayesian posterior. This unifies the majority of error measures currently in use. The optimal estimators also reveal some intricate interrelationships among information geometry, Banach spaces and sufficient statistics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Neural networks can be regarded as statistical models, and can be analysed in a Bayesian framework. Generalisation is measured by the performance on independent test data drawn from the same distribution as the training data. Such performance can be quantified by the posterior average of the information divergence between the true and the model distributions. Averaging over the Bayesian posterior guarantees internal coherence; Using information divergence guarantees invariance with respect to representation. The theory generalises the least mean squares theory for linear Gaussian models to general problems of statistical estimation. The main results are: (1)~the ideal optimal estimate is always given by average over the posterior; (2)~the optimal estimate within a computational model is given by the projection of the ideal estimate to the model. This incidentally shows some currently popular methods dealing with hyperpriors are in general unnecessary and misleading. The extension of information divergence to positive normalisable measures reveals a remarkable relation between the dlt dual affine geometry of statistical manifolds and the geometry of the dual pair of Banach spaces Ld and Ldd. It therefore offers conceptual simplification to information geometry. The general conclusion on the issue of evaluating neural network learning rules and other statistical inference methods is that such evaluations are only meaningful under three assumptions: The prior P(p), describing the environment of all the problems; the divergence Dd, specifying the requirement of the task; and the model Q, specifying available computing resources.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The problem of evaluating different learning rules and other statistical estimators is analysed. A new general theory of statistical inference is developed by combining Bayesian decision theory with information geometry. It is coherent and invariant. For each sample a unique ideal estimate exists and is given by an average over the posterior. An optimal estimate within a model is given by a projection of the ideal estimate. The ideal estimate is a sufficient statistic of the posterior, so practical learning rules are functions of the ideal estimator. If the sole purpose of learning is to extract information from the data, the learning rule must also approximate the ideal estimator. This framework is applicable to both Bayesian and non-Bayesian methods, with arbitrary statistical models, and to supervised, unsupervised and reinforcement learning schemes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neural networks have often been motivated by superficial analogy with biological nervous systems. Recently, however, it has become widely recognised that the effective application of neural networks requires instead a deeper understanding of the theoretical foundations of these models. Insight into neural networks comes from a number of fields including statistical pattern recognition, computational learning theory, statistics, information geometry and statistical mechanics. As an illustration of the importance of understanding the theoretical basis for neural network models, we consider their application to the solution of multi-valued inverse problems. We show how a naive application of the standard least-squares approach can lead to very poor results, and how an appreciation of the underlying statistical goals of the modelling process allows the development of a more general and more powerful formalism which can tackle the problem of multi-modality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geometric information relating to most engineering products is available in the form of orthographic drawings or 2D data files. For many recent computer based applications, such as Computer Integrated Manufacturing (CIM), these data are required in the form of a sophisticated model based on Constructive Solid Geometry (CSG) concepts. A recent novel technique in this area transfers 2D engineering drawings directly into a 3D solid model called `the first approximation'. In many cases, however, this does not represent the real object. In this thesis, a new method is proposed and developed to enhance this model. This method uses the notion of expanding an object in terms of other solid objects, which are either primitive or first approximation models. To achieve this goal, in addition to the prepared subroutine to calculate the first approximation model of input data, two other wireframe models are found for extraction of sub-objects. One is the wireframe representation on input, and the other is the wireframe of the first approximation model. A new fast method is developed for the latter special case wireframe, which is named the `first approximation wireframe model'. This method avoids the use of a solid modeller. Detailed descriptions of algorithms and implementation procedures are given. In these techniques utilisation of dashed line information is also considered in improving the model. Different practical examples are given to illustrate the functioning of the program. Finally, a recursive method is employed to automatically modify the output model towards the real object. Some suggestions for further work are made to increase the domain of objects covered, and provide a commercially usable package. It is concluded that the current method promises the production of accurate models for a large class of objects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is undertaken in the attempt to understand the processes at work at the cutting edge of the twist drill. Extensive drill life testing performed by the University has reinforced a survey of previously published information. This work demonstrated that there are two specific aspects of drilling which have not previously been explained comprehensively. The first concerns the interrelating of process data between differing drilling situations, There is no method currently available which allows the cutting geometry of drilling to be defined numerically so that such comparisons, where made, are purely subjective. Section one examines this problem by taking as an example a 4.5mm drill suitable for use with aluminium. This drill is examined using a prototype solid modelling program to explore how the required numerical information may be generated. The second aspect is the analysis of drill stiffness. What aspects of drill stiffness provide the very great difference in performance between short flute length, medium flute length and long flute length drills? These differences exist between drills of identical point geometry and the practical superiority of short drills has been known to shop floor drilling operatives since drilling was first introduced. This problem has been dismissed repeatedly as over complicated but section two provides a first approximation and shows that at least for smaller drills of 4. 5mm the effects are highly significant. Once the cutting action of the twist drill is defined geometrically there is a huge body of machinability data that becomes applicable to the drilling process. Work remains to interpret the very high inclination angles of the drill cutting process in terms of cutting forces and tool wear but aspects of drill design may already be looked at in new ways with the prospect of a more analytical approach rather than the present mix of experience and trial and error. Other problems are specific to the twist drill, such as the behaviour of the chips in the flute. It is now possible to predict the initial direction of chip flow leaving the drill cutting edge. For the future the parameters of further chip behaviour may also be explored within this geometric model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT