2 resultados para infection index
em Aston University Research Archive
Resumo:
Microbiological diagnosis of catheter-related bloodstream infection (CR-BSI) is often based on isolation of indistinguishable micro-organisms from an explanted catheter tip and blood culture, confirmed by antibiograms. Whether phenotypic identification of coagulase-negative staphylococci (CoNS) allows an accurate diagnosis of CR-BSI to be established was evaluated. Eight patients with a diagnosis of CR-BSI had CoNS isolated from pure blood cultures and explanted catheter tips which were considered as indistinguishable strains by routine microbiological methods. For each patient, an additional three colonies of CoNS isolated from the blood and five from the catheter tip were subcultured and further characterized by antibiogram profiles, analytical profile index (API) biotyping and PFGE. PFGE distinguished more strains of CoNS compared to API biotyping or antibiograms (17, 10 and 11, respectively). By PFGE, indistinguishable micro-organisms were only isolated from pure blood and catheter tip cultures in four out of eight (50%) patients thus supporting the diagnosis of CR-BSI. In another patient, indistinguishable micro-organisms were identified in both cultures; however, other strains of CoNS were also present. The remaining three patients had multiple strains of CoNS, none of which were indistinguishable in the tip and blood cultures, thus questioning the diagnosis of CR-BSI. Phenotypic characterization of CoNS lacked discriminatory power. Current routine methods of characterizing a limited number of pooled colonies may generate misleading results as multiple strains may be present in the cultures. Multiple colonies should be studied using a rapid genotypic characterization method to confirm or refute the diagnosis of CR-BSI. © 2007 SGM.
Resumo:
Objectives: A rapid random amplification of polymorphic DNA (RAPD) technique was developed to distinguish between strains of coagulase-negative staphylococci (CoNS) involved in central venous catheter (CVC)-related bloodstream infection. Its performance was compared with that of pulsed-field gel electrophoresis (PFGE). Methods: Patients at the University Hospital Birmingham NHS Foundation Trust, U.K. who underwent stem cell transplantation and were diagnosed with CVC-related bloodstream infection due to CoNS whilst on the bone marrow transplant unit were studied. Isolates of CoNS were genotyped by PFGE and RAPD, the latter employing a single primer and a simple DNA extraction method. Results: Both RAPD and PFGE were highly discriminatory (Simpson's diversity index, 0.96 and 0.99, respectively). Within the 49 isolates obtained from blood cultures of 33 patients, 20 distinct strains were identified by PFGE and 25 by RAPD. Of the 25 strains identified by RAPD, nine clusters of CoNS contained isolates from multiple patients, suggesting limited nosocomial spread. However, there was no significant association between time of inpatient stay and infection due to any particular strain. Conclusion: The RAPD technique presented allows CoNS strains to be genotyped with high discrimination within 4 h, facilitating real-time epidemiological investigations. In this study, no single strain of CoNS was associated with a significant number of CVC-related bloodstream infections. © 2005 Published by Elsevier Ltd on behalf of the British Infection Society.