3 resultados para industrial waste mutagenicity
em Aston University Research Archive
Resumo:
Due to vigorous globalisation and product proliferation in recent years, more waste has been produced by the soaring manufacturing activities. This has contributed to the significant need for an efficient waste management system to ensure, with all efforts, the waste is properly treated for recycling or disposed. This paper presents a Decision Support System (DSS) framework, based on Constraint Logic Programming (CLP), for the collection management of industrial waste (of all kinds) and discusses the potential employment of Radio-Frequency Identification Technology (RFID) to improve several critical procedures involved in managing waste collection. This paper also demonstrates a widely distributed and semi-structured network of waste producing enterprises (e.g. manufacturers) and waste processing enterprises (i.e. waste recycling/treatment stations) improving their operations planning by means of using the proposed DSS. The potential RFID applications to update and validate information in a continuous manner to bring value-added benefits to the waste collection business are also presented. © 2012 Inderscience Enterprises Ltd.
Resumo:
This research is concerned with the application of operational research techniques in the development of a long- term waste management policy by an English waste disposal authority. The main aspects which have been considered are the estimation of future waste production and the assessment of the effects of proposed systems. Only household and commercial wastes have been dealt with in detail, though suggestions are made for the extension of the effect assessment to cover industrial and other wastes. Similarly, the only effects considered in detail have been costs, but possible extensions are discussed. An important feature of the study is that it was conducted in close collaboration with a waste disposal authority, and so pays more attention to the actual needs of the authority than is usual in such research. A critical examination of previous waste forecasting work leads to the use of simple trend extrapolation methods, with some consideration of seasonal effects. The possibility of relating waste production to other social and economic indicators is discussed. It is concluded that, at present, large uncertainties in predictions are inevitable; waste management systems must therefore be designed to cope with this uncertainty. Linear programming is used to assess the overall costs of proposals. Two alternative linear programming formulations of this problem are used and discussed. The first is a straightforward approach, which has been .implemented as an interactive computer program. The second is more sophisticated and represents the behaviour of incineration plants more realistically. Careful attention is paid to the choice of appropriate data and the interpretation of the results. Recommendations are made on methods for immediate use, on the choice of data to be collected for future plans, and on the most useful lines for further research and development.
Drying kinetic analysis of municipal solid waste using modified page model and pattern search method
Resumo:
This work studied the drying kinetics of the organic fractions of municipal solid waste (MSW) samples with different initial moisture contents and presented a new method for determination of drying kinetic parameters. A series of drying experiments at different temperatures were performed by using a thermogravimetric technique. Based on the modified Page drying model and the general pattern search method, a new drying kinetic method was developed using multiple isothermal drying curves simultaneously. The new method fitted the experimental data more accurately than the traditional method. Drying kinetic behaviors under extrapolated conditions were also predicted and validated. The new method indicated that the drying activation energies for the samples with initial moisture contents of 31.1 and 17.2 % on wet basis were 25.97 and 24.73 kJ mol−1. These results are useful for drying process simulation and industrial dryer design. This new method can be also applied to determine the drying parameters of other materials with high reliability.