6 resultados para in-situ test

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes an in situ diagnostic and prognostic (D&P) technology to monitor the health condition of insulated gate bipolar transistors (IGBTs) used in EVs with a focus on the IGBTs' solder layer fatigue. IGBTs' thermal impedance and the junction temperature can be used as health indicators for through-life condition monitoring (CM) where the terminal characteristics are measured and the devices' internal temperature-sensitive parameters are employed as temperature sensors to estimate the junction temperature. An auxiliary power supply unit, which can be converted from the battery's 12-V dc supply, provides power to the in situ test circuits and CM data can be stored in the on-board data-logger for further offline analysis. The proposed method is experimentally validated on the developed test circuitry and also compared with finite-element thermoelectrical simulation. The test results from thermal cycling are also compared with acoustic microscope and thermal images. The developed circuitry is proved to be effective to detect solder fatigue while each IGBT in the converter can be examined sequentially during red-light stopping or services. The D&P circuitry can utilize existing on-board hardware and be embedded in the IGBT's gate drive unit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new instrument and method are described that allow the hydraulic conductivities of highly permeable porous materials, such as gravels in constructed wetlands, to be determined in the field. The instrument consists of a Mariotte siphon and a submersible permeameter cell with manometer take-off tubes, to recreate in-situ the constant head permeameter test typically used with excavated samples. It allows permeability to be measured at different depths and positions over the wetland. Repeatability obtained at fixed positions was good (normalised standard deviation of 1–4%), and results obtained for highly homogenous silica sand compared well when the sand was retested in a lab permeameter (0.32 mm.s–1 and 0.31 mm.s–1 respectively). Practical results have a ±30% associated degree of uncertainty because of the mixed effect of natural variation in gravel core profiles, and interstitial clogging disruption during insertion of the tube into the gravel. This error is small, however, compared to the orders of magnitude spatial variations detected. The technique was used to survey the hydraulic conductivity profile of two constructed wetlands in the UK, aged 1 and 15 years respectively. Measured values were high (up to 900 mm.s –1) and varied by three orders of magnitude, reflecting the immaturity of the wetland. Detailed profiling of the younger system suggested the existence of preferential flow paths at a depth of 200 mm, corresponding to the transition between more coarse and less coarse gravel layers (6–12 mm and 3–6 mm respectively), and transverse drift towards the outlet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spin coating polymer blend thin films provides a method to produce multiphase functional layers of high uniformity covering large surface areas. Applications for such layers include photovoltaics and light-emitting diodes where performance relies upon the nanoscale phase separation morphology of the spun film. Furthermore, at micrometer scales, phase separation provides a route to produce self-organized structures for templating applications. Understanding the factors that determine the final phase-separated morphology in these systems is consequently an important goal. However, it has to date proved problematic to fully test theoretical models for phase separation during spin coating, due to the high spin speeds, which has limited the spatial resolution of experimental data obtained during the coating process. Without this fundamental understanding, production of optimized micro- and nanoscale structures is hampered. Here, we have employed synchronized stroboscopic illumination together with the high light gathering sensitivity of an electron-multiplying charge-coupled device camera to optically observe structure evolution in such blends during spin coating. Furthermore the use of monochromatic illumination has allowed interference reconstruction of three-dimensional topographies of the spin-coated film as it dries and phase separates with nanometer precision. We have used this new method to directly observe the phase separation process during spinning for a polymer blend (PS-PI) for the first time, providing new insights into the spin-coating process and opening up a route to understand and control phase separation structures. © 2011 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ethylene-propylene rubber (EPR) functionalised with glycidyl methacrylate (GMA) (f-EPR) during melt processing in the presence of a co-monomer, such as trimethylolpropane triacrylate (Tris), was used to promote compatibilisation in blends of polyethylene terephthalate (PET) and f-EPR, and their characteristics were compared with those of PET/f-EPR reactive blends in which the f-EPR was functionalised with GMA via a conventional free radical melt reaction (in the absence of a co-monomer). Binary blends of PETand f-EPR (with two types of f-EPR prepared either in presence or absence of the co-monomer) with various compositions (80/20, 60/40 and 50/50 w/w%) were prepared in an internal mixer. The blends were evaluated by their rheology (from changes in torque during melt processing and blending reflecting melt viscosity, and their melt flow rate), morphology scanning electron microscopy (SEM), dynamic mechanical properties (DMA), Fourier transform infrared (FTIR) analysis, and solubility (Molau) test. The reactive blends (PET/f-EPR) showed a marked increase in their melt viscosities in comparison with the corresponding physical (PET/EPR) blends (higher torque during melt blending), the extent of which depended on the amount of homopolymerised GMA (poly-GMA) present and the level of GMA grafting in the f-EPR. This increase was accounted for by, most probably, the occurrence of a reaction between the epoxy groups of GMA and the hydroxyl/carboxyl end groups of PET. Morphological examination by SEM showed a large improvement of phase dispersion, indicating reduced interfacial tension and compatibilisation, in both reactive blends, but with the Tris-GMA-based blends showing an even finer morphology (these blends are characterised by absence of poly-GMA and presence of higher level of grafted GMA in its f-EPR component by comparison to the conventional GMA-based blends). Examination of the DMA for the reactive blends at different compositions showed that in both cases there was a smaller separation between the glass transition temperatures compared to their position in the corresponding physical blends, which pointed to some interaction or chemical reaction between f-EPR and PET. The DMA results also showed that the shifts in the Tgs of the Tris-GMA-based blends were slightly higher than for the conventional GMA-blends. However, the overall tendency of the Tgs to approach each other in each case was found not to be significantly different (e.g. in a 60/40 ratio the former blend shifted by up to 4.5 °C in each direction whereas in the latter blend the shifts were about 3 °C). These results would suggest that in these blends the SEM and DMA analyses are probing uncorrelatable morphological details. The evidence for the formation of in situ graft copolymer between the f-EPR and PET during reactive blending was clearly illustrated from analysis by FTIR of the separated phases from the Tris-GMA-based reactive blends, and the positive Molau test pointed out to graft copolymerisation in the interface. A mechanism for the formation of the interfacial reaction during the reactive blending process is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactive surface of mesoporous nanocrystalline silicon was used to synthesise noble metal nanoparticles via in situ reduction of the precursor salt solutions. The synthetic methodology for metal nanoparticle formation was systematically developed, and reaction conditions of metal salts reduction were optimised to prepare nanoparticles of controlled size distribution in the order 5–10 nm inside the mesoporous silicon template. CO oxidation was used as a test reaction for the synthesised Pt/porous silicon catalysts. Sharp reaction light-off was observed at about 120 °C on the optimised catalysts. The catalysts were shown to be stable in the extended steady-state runs and in the catalysts re-use experiments. Metal nanoparticles were shown to be stable to sintering at elevated temperatures up to 1000 °C. However, after thermal treatment on air, Pt nanoparticles were covered by a SiOx layer and were less active in CO oxidation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a diagnostic and prognostic condition monitoring method for insulated-gate bipolar transistor (IGBT) power modules for use primarily in electric vehicle applications. The wire-bond-related failure, one of the most commonly observed packaging failures, is investigated by analytical and experimental methods using the on-state voltage drop as a failure indicator. A sophisticated test bench is developed to generate and apply the required current/power pulses to the device under test. The proposed method is capable of detecting small changes in the failure indicators of the IGBTs and freewheeling diodes and its effectiveness is validated experimentally. The novelty of the work lies in the accurate online testing capacity for diagnostics and prognostics of the power module with a focus on the wire bonding faults, by injecting external currents into the power unit during the idle time. Test results show that the IGBT may sustain a loss of half the bond wires before the impending fault becomes catastrophic. The measurement circuitry can be embedded in the IGBT drive circuits and the measurements can be performed in situ when the electric vehicle stops in stop-and-go, red light traffic conditions, or during routine servicing.