18 resultados para in-cylinder pressure
em Aston University Research Archive
Resumo:
The aim of this project was to develop the education work of an environmental pressure group. The research devised and implemented a project to produce multi-media teaching packs on the urban environment. Whilst this involved understanding environmental education it was necessary to research beyond this to include the various structural and dynamic constraints on change in the field. This presented a number of methodological difficulties; from the resolution of which a model of the research process involved in this project has been developed. It is argued that research oriented towards practical change requires the insights of an experienced practitioner to be combined with the rigours of controlled systematic enquiry. Together these function as a model-building process encompassing intuition, induction and deduction. Model testing is carried out through repeated intervention in the field; thus an interplay between researcher and client ensues such that the project develops in a mutually acceptable direction. In practice, this development will be both unpredictable and erratic. Although the conclusions reached here are based on a single case study they address general methodological issues likely to be encountered in different field settings concerned with different practical problems.
Resumo:
PURPOSE: To describe changes in intraocular pressure (IOP) in the 'alternative treatments to Inhibit VEGF in Age-related choroidal Neovascularisation (IVAN)' trial (registered as ISRCTN92166560). DESIGN: Randomised controlled clinical trial with factorial design. PARTICIPANTS: Patients (n=610) with treatment naïve neovascular age-related macular degeneration were enrolled and randomly assigned to receive either ranibizumab or bevacizumab and to two regimens, namely monthly (continuous) or as needed (discontinuous) treatment. METHODS: At monthly visits, IOP was measured preinjection in both eyes, and postinjection in the study eye. OUTCOME MEASURES: The effects of 10 prespecified covariates on preinjection IOP, change in IOP (postinjection minus preinjection) and the difference in preinjection IOP between the two eyes were examined. RESULTS: For every month in trial, there was a statistically significant rise in both the preinjection IOP and the change in IOP postinjection during the time in the trial (estimate 0.02 mm Hg, 95% CI 0.01 to 0.03, p<0.001 and 0.03 mm Hg, 95% CI 0.01 to 0.04, p=0.002, respectively). There was also a small but significant increase during the time in trial in the difference in IOP between the two eyes (estimate 0.01 mm Hg, 95% CI 0.005 to 0.02, p<0.001). There were no differences between bevacizumab and ranibizumab for any of the three outcomes (p=0.93, p=0.22 and p=0.87, respectively). CONCLUSIONS: Anti-vascular endothelial growth factor agents induce increases in IOP of small and uncertain clinical significance.
Resumo:
Renewable non-edible plant oils such as jatropha and karanj have potential to substitute fossil diesel fuels in CI engines. A multi-cylinder water cooled IDI type CI engine has been tested with jatropha and karanj oils and comparisons made against fossil diesel. The physical and chemical properties of the three fuels were measured to investigate the suitability of jatropha and karanj oils as fuels for CI engines. The engine cooling water circuit and fuel supply systems were modified such that hot jacket water preheated the neat plant oil prior to injection. Between jatropha and karanj there was little difference in the performance, emission and combustion results. Compared to fossil diesel, the brake specific fuel consumption on volume basis was around 3% higher for the plant oils and the brake thermal efficiency was almost similar. Jatropha and karanj operation resulted in higher CO 2 and NO x emissions by 7% and 8% respectively, as compared to diesel. The cylinder gas pressure diagram showed stable engine operation with both plant oils. At full load, the plant oils gave around 3% higher peak cylinder pressure than fossil diesel. With the plant oils, cumulative heat release was smaller at low load and almost similar at full load, compared to diesel. At full load, the plant oils exhibited 5% shorter combustion duration. The study concludes that the IDI type CI engine can be efficiently operated with neat jatropha (or karanj) oil preheated by jacket water, after small modifications of the engine cooling and fuel supply circuits. © 2012 Elsevier Ltd.
Resumo:
De-inking sludge can be converted into useful forms of energy to provide economic and environmental benefits. In this study, pyrolysis oil produced from de-inking sludge through an intermediate pyrolysis technique was blended with biodiesel derived from waste cooking oil, and tested in a multi-cylinder indirect injection type CI engine. The physical and chemical properties of pyrolysis oil and its blends (20 and 30 vol.%) were measured and compared with those of fossil diesel and pure biodiesel (B100). Full engine power was achieved with both blends, and very little difference in engine performance and emission results were observed between 20% and 30% blends. At full engine load, the brake specific fuel consumption on a volume basis was around 6% higher for the blends when compared to fossil diesel. The brake thermal efficiencies were about 3-6% lower than biodiesel and were similar to fossil diesel. Exhaust gas emissions of the blends contained 4% higher CO2 and 6-12% lower NOx, as compared to fossil diesel. At full load, CO emissions of the blends were decreased by 5-10 times. The cylinder gas pressure diagram showed stable engine operation with the 20% blend, but indicated minor knocking with 30% blend. Peak cylinder pressure of the 30% blend was about 5-6% higher compared to fossil diesel. At full load, the peak burn rate of combustion from the 30% blend was about 26% and 12% higher than fossil diesel and biodiesel respectively. In comparison to fossil diesel the combustion duration was decreased for both blends; for 30% blend at full load, the duration was almost 12% lower. The study concludes that up to 20% blend of de-inking sludge pyrolysis oil with biodiesel can be used in an indirect injection CI engine without adding any ignition additives or surfactants.
Resumo:
Digestate from the anaerobic digestion conversion process is widely used as a farm land fertiliser. This study proposes an alternative use as a source of energy. Dried digestate was pyrolysed and the resulting oil was blended with waste cooking oil and butanol (10, 20 and 30 vol.%). The physical and chemical properties of the pyrolysis oil blends were measured and compared with pure fossil diesel and waste cooking oil. The blends were tested in a multi-cylinder indirect injection compression ignition engine.Engine combustion, exhaust gas emissions and performance parameters were measured and compared with pure fossil diesel operation. The ASTM copper corrosion values for 20% and 30% pyrolysis blends were 2c, compared to 1b for fossil diesel. The kinematic viscosities of the blends at 40 C were 5–7 times higher than that of fossil diesel. Digested pyrolysis oil blends produced lower in-cylinder peak pressures than fossil diesel and waste cooking oil operation. The maximum heat release rates of the blends were approximately 8% higher than with fossil diesel. The ignition delay periods of the blends were higher; pyrolysis oil blends started to combust late and once combustion started burnt quicker than fossil diesel. The total burning duration of the 20% and 30% blends were decreased by 12% and 3% compared to fossil diesel. At full engine load, the brake thermal efficiencies of the blends were decreased by about 3–7% when compared to fossil diesel. The pyrolysis blends gave lower smoke levels; at full engine load, smoke level of the 20% blend was 44% lower than fossil diesel. In comparison to fossil diesel and at full load, the brake specific fuel consumption (wt.) of the 30% and 20% blends were approximately 32% and 15% higher. At full engine load, the CO emission of the 20% and 30% blends were decreased by 39% and 66% with respect to the fossil diesel. Blends CO2 emissions were similar to that of fossil diesel; at full engine load, 30% blend produced approximately 5% higher CO2 emission than fossil diesel. The study concludes that on the basis of short term engine experiment up to 30% blend of pyrolysis oil from digestate of arable crops can be used in a compression ignition engine.
Resumo:
Presentation of the progress made in modelling fibre agglomerate transport in the racetrack channel. Fibre agglomerates can be generated through the disruption of insulation materials during LOCA in NPPs. The fibres can make their way to the containment sump strainers and lead to their blockage. This blockage can lead to an increase in the pressure drop acting across the strainers, which can lead to cavitation behind the strainer and in the recirculation pumps. This will lead to a loss of ECC water reaching the reactor. A small proportion of the fibres may also reach the reactor vessel. Therefore reliable numerical models of the three-dimensional flow behaviour of the fibres must be developed. The racetrack channel offers the chance to validate such models. The presentation describes the techniques involved and the results obtained from transient simulations of the whole channel.
Resumo:
OBJECTIVES: To assess whether blood pressure control in primary care could be improved with the use of patient held targets and self monitoring in a practice setting, and to assess the impact of these on health behaviours, anxiety, prescribed antihypertensive drugs, patients' preferences, and costs. DESIGN: Randomised controlled trial. SETTING: Eight general practices in south Birmingham. PARTICIPANTS: 441 people receiving treatment in primary care for hypertension but not controlled below the target of < 140/85 mm Hg. INTERVENTIONS: Patients in the intervention group received treatment targets along with facilities to measure their own blood pressure at their general practice; they were also asked to visit their general practitioner or practice nurse if their blood pressure was repeatedly above the target level. Patients in the control group received usual care (blood pressure monitoring by their practice). MAIN OUTCOME MEASURES: Primary outcome: change in systolic blood pressure at six months and one year in both intervention and control groups. Secondary outcomes: change in health behaviours, anxiety, prescribed antihypertensive drugs, patients' preferences of method of blood pressure monitoring, and costs. RESULTS: 400 (91%) patients attended follow up at one year. Systolic blood pressure in the intervention group had significantly reduced after six months (mean difference 4.3 mm Hg (95% confidence interval 0.8 mm Hg to 7.9 mm Hg)) but not after one year (mean difference 2.7 mm Hg (- 1.2 mm Hg to 6.6 mm Hg)). No overall difference was found in diastolic blood pressure, anxiety, health behaviours, or number of prescribed drugs. Patients who self monitored lost more weight than controls (as evidenced by a drop in body mass index), rated self monitoring above monitoring by a doctor or nurse, and consulted less often. Overall, self monitoring did not cost significantly more than usual care (251 pounds sterling (437 dollars; 364 euros) (95% confidence interval 233 pounds sterling to 275 pounds sterling) versus 240 pounds sterling (217 pounds sterling to 263 pounds sterling). CONCLUSIONS: Practice based self monitoring resulted in small but significant improvements of blood pressure at six months, which were not sustained after a year. Self monitoring was well received by patients, anxiety did not increase, and there was no appreciable additional cost. Practice based self monitoring is feasible and results in blood pressure control that is similar to that in usual care.
Resumo:
Preeclampsia (PE) is characterized by widespread endothelial damage with hypertension, proteinuria, glomeruloendotheliosis and elevated soluble Flt-1 (sFlt-1), a natural occurring antagonist of vascular endothelial growth factor (VEGF). Cancer patients receiving anti-VEGF therapy exhibit similar symptoms. We suggested that a decrease in circulating sFlt-1 would alleviate the symptoms associated with PE. Adenoviral (Adv) overexpression of sFlt-1 induced proteinuria, caused glomerular damage and increase in blood pressure in female Balb/c mice. Circulating level of sFlt-1 above 50 ng/ml plasma induced severe vascular damage and glomerular endotheliosis. Albumin concentration in urine was elevated up to 30-fold, compared to control AdvGFP-treated animals. The threshold of kidney damage was in the range of 20-30 ng/ml sFlt-1 in plasma (8-15 ng/ml in urine). Co-administration of AdvsFlt-1 with AdvVEGF to neutralize circulating sFlt-1 resulted in more than a 70% reduction in free sFlt-1 in plasma, more than 80% reduction in urine and rescued the damaging effect of sFlt-1 on the kidneys. This demonstrates that below a critical threshold sFlt-1 fails to elicit damage to the fenestrated endothelium and that co-expression of VEGF is able to rescue effects mediated by sFlt-1 overexpression.
Resumo:
Just-in-time (JIT) production systems are increasingly being seen as a vital way for manufacturing organizations to enhance their competitiveness. A number of commentators have suggested that this will simplify jobs and reduce employee well-being. This paper presents a conceptual framework for interpreting the effects of JIT and reports findings from a study of the impact of JIT on the content of workers'jobs and on job satisfaction and psychological strain. The introduction of JIT led to a reduction in control over work timing, an increase in production pressure, and a drop in job satisfaction. Contrary to claims in the literature, no changes were found in control over work methods, other aspects of cognitive demands and skill use, and in psychological strain. The study shows that JIT can be implemented without radical changes in job content or adverse impact in terms of employee strain, and the implications of these findings are discussed.
Resumo:
Picky eating is a childhood behavior that vexes many parents and is a symptom in the newer diagnosis of Avoidant/Restrictive Food Intake Disorder (ARFID) in adults. Pressure to eat, a parental controlling feeding practice aimed at encouraging a child to eat more, is associated with picky eating and a number of other childhood eating concerns. Low intuitive eating, an insensitivity to internal hunger and satiety cues, is also associated with a number of problem eating behaviors in adulthood. Whether picky eating and pressure to eat are predictive of young adult eating behavior is relatively unstudied. Current adult intuitive eating and disordered eating behaviors were self-reported by 170 college students, along with childhood picky eating and pressure through retrospective self- and parent reports. Hierarchical regression analyses revealed that childhood parental pressure to eat, but not picky eating, predicted intuitive eating and disordered eating symptoms in college students. These findings suggest that parental pressure in childhood is associated with problematic eating patterns in young adulthood. Additional research is needed to understand the extent to which parental pressure is a reaction to or perhaps compounds the development of problematic eating behavior.
Resumo:
Waste cooking oils can be converted into fuels to provide economical and environmental benefits. One option is to use such fuels in stationary engines for electricity generation, co-generation or tri-generation application. In this study, biodiesel derived from waste cooking oil was tested in an indirect injection type 3-cylinder Lister Petter biodiesel engine. We compared the combustion and emission characteristics with that of fossil diesel operation. The physical and chemical properties of pure biodiesel (B100) and its blends (20% and 60% vol.) were measured and compared with those of diesel. With pure biodiesel fuel, full engine power was achieved and the cylinder gas pressure diagram showed stable operation. At full load, peak cylinder pressure of B100 operation was almost similar to diesel and peak burn rate of combustion was about 13% higher than diesel. For biodiesel operation, occurrences of peak burn rates were delayed compared to diesel. Fuel line injection pressure was increased by 8.5-14.5% at all loads. In comparison to diesel, the start of combustion was delayed and 90% combustion occurred earlier. At full load, the total combustion duration of B100 operation was almost 16% lower than diesel. Biodiesel exhaust gas emissions contained 3% higher CO2 and 4% lower NOx, as compared to diesel. CO emissions were similar at low load condition, but were decreased by 15 times at full load. Oxygen emission decreased by around 1.5%. Exhaust gas temperatures were almost similar for both biodiesel and diesel operation. At full engine load, the brake specific fuel consumption (on a volume basis) and brake thermal efficiency were respectively about 2.5% and 5% higher compared to diesel. Full engine power was achieved with both blends, and little difference in engine performance and emission results were observed between 20% and 60% blends. The study concludes that biodiesel derived from waste cooking oil gave better efficiency and lower NOx emissions than standard diesel. Copyright © 2012 SAE International.
Resumo:
Current therapies to reduce hyperglycaemia in type 2 diabetes mellitus (T2DM) mostly involve insulin-dependent mechanisms and lose their effectiveness as pancreatic ß-cell function declines. In the kidney, filtered glucose is reabsorbed mainly via the high-capacity, low-affinity sodium glucose cotransporter-2 (SGLT2) at the luminal surface of cells lining the first segment of the proximal tubules. Selective inhibitors of SGLT2 reduce glucose reabsorption, causing excess glucose to be eliminated in the urine; this decreases plasma glucose. In T2DM, the glucosuria produced by SGLT2 inhibitors is associated with weight loss, and mild osmotic diuresis might assist a reduction in blood pressure. The mechanism is independent of insulin and carries a low risk of hypoglycaemia. This review examines the potential of SGLT2 inhibitors as a novel approach to the treatment of hyperglycaemia in T2DM.
Resumo:
Cardiovascular disease (CVD) is the leading cause of death in Europe responsible for more than 4.3 million deaths annually. The World Health Organisation funded the Monica project (1980s-1990s) which monitored ten million subjects aged 22-6Syrs, and demonstrated that coronary heart disease (CHD) mortality declined over 10 years, was due in two thirds of cases to reduced incidence of CHD (reduced risk behaviours e.g. poor diet and smoking) and one third by improved treatments. Epidemiological evidence suggests diets rich in antioxidants decrease incidence of CVD. Regular consumption of nuts, rich in vitamin E and polyphenols reduces atherosclerosis, an important risk for heart disease. Intervention studies to date using alpha tocopherol (an active component of vitamin E) have not consistently proved beneficial. This thesis aims to investigate the effect of almond supplementation on vascular risk factors in healthy young males (18-3Syrs); mature males and female(>SOyrs); and males considered at increased risk of CVD (18-3Syrs) in a cohort of 67 subjects. The effects of almond intake were assessed after 2Sg/d for four weeks followed by SOg/d for four weeks and compared to a control group which did not consume almonds or change their diet. Cardiovascular risk was assessed by plasma lipid profiles, apolipoprotein A1, plasma nitrates/nitrates, vascular flow, BMl, blood pressure, sVCAM-1 and protein oxidation. Systolic and diastolic blood pressures were reduced in almond supplemented volunteers but not in controls. Dietary monounsaturated fatty acids, polyunsaturated fatty acid content and total dietary fats were increased by almond supplementation. Neither sVCAM-1, venous occlusion plethysmography nor plasma nitrite levels were affected by almond intake in any independent group. No significant changes in plasma lipids, and apolipoprotein A1 were observed. In conclusion almonds supplementation caused a reduction in blood pressure that may be due to increased sensitivity of the baroreceptors after increased monounsaturated fatty acid intake.
Resumo:
A hot filtration unit downstream of a 1kg/h fluidised bed fast pyrolysis reactor was designed and built. The filter unit operates at 450oC and consists of 1 exchangeable filter candle with reverse pulse cleaning system. Hot filtration experiments up to 7 hours were performed with beech wood as feedstock. It was possible to produce fast pyrolysis oils with a solid content below 0.01 wt%. The additional residence time of the pyrolysis vapours and secondary vapour cracking on the filter cake caused an increase of non-condensable gases at the expense of organic liquid yield. The oils produced with hot filtration showed superior quality properties regarding viscosity than standard pyrolysis oils. The oils were analysed by rotational viscosimetry and gel permeation chromatography before and after accelerated aging. During filtration the separated particulates accumulate on the candle surface and build up the filter cake. The filter cake leads to an increase in pressure drop between the raw gas and the clean gas side of the filter candle. At a certain pressure drop the filter cake has to be removed by reverse pulse cleaning to regenerate the pressure drop. The experiments showed that successful pressure drop recovery was possible during the initial filtration cycles, thereafter further cycles showed minor pressure drop recovery and therefore a steady increase in differential pressure. Filtration with pre-coating the candle to form an additional layer between the filter candle and cake resulted in total removal of the dust cake.
Resumo:
This thesis is dedicated to the production and analysis of thin hydrogenated amorphous carbon films. A cascaded arc plasma source was used to produce a high density plasma of hydrocarbon radicals that deposited on a substrate at ultra low energies. The work was intended to create a better understanding of the mechanisms responsible for the film formation, by an extensive analysis on the properties of the films in correlation with the conditions used in the plasma cell. Two different precursors were used: methane and acetylene. They revealed a very different picture for the mechanism of film formation and properties. Methane was less successful, and the films formed were soft, with poor adhesion to the substrate and decomposing with time. Acetylene was the better option, and the films formed in this case were harder, with better adhesion to the substrate and stable over time. The plasma parameters could be varied to change the character of films, from polymer-like to diamond-like carbon. Films deposited from methane were grown at low deposition rates, which increased with the increase in process pressure and source power and decreased with the increase in substrate temperature and in hydrogen fraction in the carrier gas. The films had similar hydrogen content, sp3 fractions, average roughness (Ra) and low hardness. Above a deposition temperature of 350°C graphitization occurred - an increase in the sp2 fraction. A deposition mechanism was proposed, based upon the reaction product of the dissociative recombination of CH4+. There were small differences between the chemistries in the plasma at low and high precursor flow rates and low and high substrate temperatures; all experimental conditions led to formation of films that were either polymer-like, soft amorphous hydrogenated carbon or graphitic-like in structure. Films deposited from acetylene were grown at much higher deposition rates on different substrates (silicon, glass and plastics). The film quality increased noticeably with the increase of relative acetylene to argon flow rate, up to a certain value, where saturation occurred. With the increase in substrate temperature and the lowering of the acetylene injection ring position further improvements in film quality were achieved. The deposition process was scaled up to large area (5 x 5 cm) substrates in the later stages of the project. A deposition mechanism was proposed, based upon the reaction products of the dissociative recombination of C2H2 +. There were large differences between the chemistry in the plasma at low and medium/high precursor flow rates. This corresponded to large differences in film properties from low to medium flow rates, when films changed their character from polymer-like to diamond-like, whereas the differences between films deposited at medium and high precursor flow rates were small. Modelling of the film growth on silicon substrates was initiated and it explained the formation of sp2 and sp3 bonds at these very low energies. However, further improvements to the model are needed.